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• Four	criteria	(Collberg	et	al)

• Potency:	confusion,	complexity,	manual	effort

• Resilience:	resistance	against	(automated)	tools

• Cost:	performance,	code	size

• Stealth:	identification	of	(components	of)	protections	



Resilience	(Collberg	et	al,	1997)	
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• Four	criteria	(Collberg	et	al)

• Potency:	confusion,	complexity,	manual	effort

• Resilience:	resistance	against	(automated)	tools

• Cost:	performance,	code	size

• Stealth:	identification	of	(components	of)	protections	

of	what?

how	computed?

what	task?

by	who?
existing	and	non-existing?

operated	by	who? to	achieve	what?

no	other	impacts	on	software-development	life	cycle?

where	and	when	does	this	matter?
which	identification	techniques?



Lecture	Overview
1. Protection	vis-à-vis	attacks

• attacks	on	what?
• attack	and	protection	models
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2. Qualitative	Evaluation

3. Quantitative	Evaluation
• complexity	metrics
• tools

4. Human	Experiments



What	is	being	attacked?
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Asset category Security 
Requirements Examples of threats

Private data
(keys, credentials, tokens, 
private info)

Confidentiality
Privacy
Integrity

Impersonation, illegitimate authorization
Leaking sensitive data
Forging licenses

Public data
(keys, service info) Integrity Forging	licenses

Unique data
(tokens, keys, used IDs)

Confidentiality
Integrity

Impersonation
Service disruption,	illegitimate	access

Global data (crypto & app 
bootstrap keys)

Confidentiality
Integrity

Build	emulators
Circumvent	authentication	verification	

Traceable data/code
(Watermarks, finger-prints,
traceable keys)

Non-repudiation Make identification impossible

Code (algorithms, protocols,
security libs) Confidentiality Reverse engineering

Application execution
(license checks & limitations, 
authentication & integrity 
verification, protocols)

Execution 
correctness Integrity

Circumvent security features (DRM)
Out-of-context use, violating license terms
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What	is	being	attacked?

ASSET

PROTECTION	1

PROTECTION	2

PROTECTION	3

PROTECTION	4

PROTECTION	5

PROTECTION	6

PROTECTION	7

PROTECTION	8ADDITIONAL	CODE

1.	Attackers	aim	for	assets,	layered	protections	are	only	obstacles
2.	Attackers	need	to	find	assets	(by	iteratively	zooming	in)
3.	Attackers	need	tools	&	techniques	to	build	a	program	representation,		
to	analyze,	and	to	extract	features

4.	Attackers	iteratively	build	strategy	based	on	experience	and	
confirmed	and	revised	assumptions,	incl.	on	path	of	least	resistance

5.	Attackers	can	undo,	circumvent,	or	overcome	protections
with	or	without	tampering	with	the	code



Protection	againts	MATE	attacks
FPGA	sampler oscilloscope

developer	boards JTAG	debugger

software	analysis	tools

8

screwdriver



Economics	of	MATE	attacks

engineering
a.k.a.	identification

exploitation
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Economics	of	MATE	attacks

€/day

timeengineering
a.k.a.	identification

exploitation

protection

diversity
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Economics	of	MATE	attacks

€/day

timeengineering
a.k.a.	identification

exploitation

protection

diversity
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renewability



Attack	Modelling:	Attack	Graphs	(AND-OR	Graphs)

Trace	Data

Polymorphic	
selfcheckers

Compare	trace	
with	binary

Locate	
checksums

Forge	correct	
checksum

Breaking	
checksum

Debug	App
Trace	
Process	<->	O.S.	
interaction

AND

thwartsOR

• relate	attack	goal,	subgoals,	(and	protections)

13



Attack	Modelling:	Petri	Nets	(Wang	et	al,	
2012)
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• Model	attack	paths
• places	are	reached	subgoals	(with	properties)
• transitions	are	attack	steps
• can	model	AND-OR
• can	be	simulated	for	protected	and	unprotected	applications

programs which were protected by software tamper resistant 
transformations they proposed is a NP-complete problem. S. 
Chow et al. [18] did a similar work. 

B. Evaluation based on Attack 
Researches in this group measure or proof the effectiveness 

of protection techniques from the view of attack.  

M. Ceccato et al. [9] proposed two manual experiments to 
empirically measure the effectiveness of identifier renaming, 
which is an instance of layout obfuscation. I. Sutherland et al. 
[10] did a similar work, but focused on the reverse engineering 
process for binary code. Both M. Ceccato and I. Sutherland 
analyzed factors affecting attack process, for example, 
attacker’s ability, but none specific metric was proposed.  

As well as manually assessment, several anti-protection 
technologies were used too. C. Linn and S. Debray[19] used 
three different disassemblers to evaluate the code obfuscation 
techniques they proposed, and S. Udupa[11] proposed 
deobfuscation approaches to evaluate control flow flattening 
obfuscation. J. Hamilton and S. Danicic [22] evaluated Java 
static watermarking algorithms by obfuscating, which can be 
treated as a technique for distortive attacks. Except theoretical 
analysis, C. Wang et al. [17] also proved the effectiveness of 
the transformation they proposed with a control-flow analysis 
tool.  

Technically, the evaluation approach in this paper belongs 
to the second group, but acts differently: firstly, we believe all 
software (a program which is made up of a sequence of code) 
are the same to attackers, therefore, the approach we proposed 
does not aim at a specific protection technology; secondly, we 
propose a metric and a method for counting the metric; thirdly, 
rather than doing manual attacks or developing specific attack 
tools, we use an attack model to describe software attacks. 
Note that H. Goto et al. [21] applied parse tree to evaluate the 
difficulty of reading tamper-resistant software, however, 
instead of attacks, they used the model to describe software. 

III. ATTACK MODELING BASED ON PETRI NET 
Attack model has been widely used in information security. 

Most time it focuses on how to document attacks in a 
structured and reusable form [12]. J. Steffan and M. 
Schumacher [13] compared attack models with programming 
guidelines, pattern languages, evaluation criteria, and 
vulnerability databases, and proved that attack model to be the 
most suitable way to support discovery and avoidance of 
security vulnerabilities.  

In this section, we make a list of the key information 
included in one software attack process, define the attack 
model based on Marked Petri Net, and instantiate Token in it. 

A. Key Information in Software Attack 
[13] listed six types of information contained in an informal 

attack description. Based on this list, we made a new list for 
software attack description. (Fig. 1, Table I). 

Software 
Attack

Goal

Method 1

Method 2
……

State 1
State 2

……

Technique

Sub-goal

Action
Precondition

Influence

 

Figure 1.  Key information and their relationship 

TABLE I.   KEY INFORMATION IN ONE SOFTWARE ATTACK PROCESS 

Name Meaning 

Goal 
Goal is the purpose of one software attack process, and 
normally stands for getting or modifying assets 
contained in software. 

Method 
A Method stands for one possible way to achieve Goal.  
Usually, more than one Method will be included in one 
software attack process. 

State 
The sequence of States stands for the detailed process 
of software attack.  Sometimes, State can be treated as 
step in software attack process. 

Technique Technique stands for the attack technique which may be 
used in the software attack process.  

Sub-goal A Sub-goal stands for the goal of a attack technique. 

Action Action is the dynamic information in software attack, 
and stands for performing an attack technique. 

Precondition Precondition is the condition of performing an attack 
technique. 

Influence Influence is the consequence of performing an attack 
technique. 

“What’s the condition of attack?”, “If attack can be 
executed or not?”, and “What will happen after the execution?” 
are some of the essential questions in the effectiveness 
evaluation of software protection. Thus, precondition, action, 
and influence are important elements needing to be described. 

One of the most popular attack models is Attack Tree [14]. 
It is a tree structure to describe the security of systems, with the 
Goal as the root node and different Methods as leaf nodes. 
State and Sub-goal are the other nodes in the tree, and there are 
two kinds of interdependencies of States: AND node and OR 
node [14]. But Attack Tree cannot describe Precondition, 
Action, and Influence precisely.  

In this paper, we prefer Petri Net (C. A. Petri, 1962), which 
is a net-like graph and carries more information than Attack 
Tree. 

B. Software Attack Model based on Marked Petri Net 
Petri Net describes four aspects of a system: states, events, 

conditions, and the relationships among them. When condition 
was satisfied, related event would occur; the occurrence of 
event would change the states in the system and cause some 
other conditions to be satisfied [15]. A basic Petri Net is a tuple 
PN= (P, T, F) where: 

x P is a finite set of states, represented by circles. 

x T is a finite set of events, represented by rectangles.  

x F⊆ {T×P}∪{P×T} , is a multiset of directed arcs. 

x P∪T≠Ø, P∩T＝Ø. 

Fig. 2 is an example of Petri Net. P={p0, p1, p2, p3, p4}is a 
set of states, T={t0, t1, t2, t3, t4, t5} is a set of events, p0 is input 
of t0, and p1 is output of t0; at the same time, t0 is the output of 
p0, and the input of p1. Besides, p0’s next Place is p1. 

0p 1p

2p

3p 4p
0t

1t

2t 5t

4t  

Figure 2.  Example of Petri Net 

P, T, F are static properties of Petri Net, and fit well with 
Goal, State, Technique, Sub-goal, and Method in Table I. If we 
treat Fig. 2 as a process of software attack, then the key 



Attack	Modelling:	Petri	Nets
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• What	is	outcome	of	transition?
• Identification	of	feature	or	asset?
• Simplified	program	(representation)
• Tampered	program
• Reduced	search	space
• Analysis	result

• What	determines	effort?
• What	code	fragments	are	relevant?
• Generic	attack	steps	vs.	concrete	attack	steps?
• How	to	aggregate	information?	

• Effort
• Probability	of	success

• How	to	build	the	Petri	Net?	(backward	reasoning	&	knowledge	base)

programs which were protected by software tamper resistant 
transformations they proposed is a NP-complete problem. S. 
Chow et al. [18] did a similar work. 
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Researches in this group measure or proof the effectiveness 
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Most time it focuses on how to document attacks in a 
structured and reusable form [12]. J. Steffan and M. 
Schumacher [13] compared attack models with programming 
guidelines, pattern languages, evaluation criteria, and 
vulnerability databases, and proved that attack model to be the 
most suitable way to support discovery and avoidance of 
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Goal as the root node and different Methods as leaf nodes. 
State and Sub-goal are the other nodes in the tree, and there are 
two kinds of interdependencies of States: AND node and OR 
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Petri Net describes four aspects of a system: states, events, 
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event would change the states in the system and cause some 
other conditions to be satisfied [15]. A basic Petri Net is a tuple 
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x T is a finite set of events, represented by rectangles.  
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set of states, T={t0, t1, t2, t3, t4, t5} is a set of events, p0 is input 
of t0, and p1 is output of t0; at the same time, t0 is the output of 
p0, and the input of p1. Besides, p0’s next Place is p1. 
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Figure 2.  Example of Petri Net 
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Goal, State, Technique, Sub-goal, and Method in Table I. If we 
treat Fig. 2 as a process of software attack, then the key 



Example	attack:	One-Time	Password	Generator (P.	Falcarin)
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• Step	1:	get	working	provisioning	&	OTP	generation

identify	PIN	code
static	or	dynamic

bypass	PIN	code
tampering

steal	PIN
code	injection



Example	attack:	One-Time	Password	generator (P.	Falcarin)
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• Step	2:	retrieve	seed	of	OTP	generation
• during	OTP	generation

isolate	OTP	
generation	code

debugging

isolate	XOR	chain
structural	matching observe	seed

debugging



Example	attack:	One-Time	Password	generator (P.	Falcarin)

17

• Step	2:	retrieve	seed	of	OTP	generation
• alternatively,	during	provisioning

dummy

preparation:
fake	server	(T4)

tampering	for	multiple	runs	(T5)

T7:	identify	AES	code
dynamic	analysis	on	

untampered,	reinstalled	app

identify	AES	code
dynamic	analysis

debugging

observe	seed
debugging



Lecture	Overview
1. Protection	vis-à-vis	attacks

• attacks	on	what?
• attack	and	protection	models
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2. Qualitative	Evaluation

3. Quantitative	Evaluation
• complexity	metrics
• tools

4. Human	Experiments
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Scenarios

Das Kompetenzzentrum SBA Research wird im Rahmen von COMET – Competence Centers for Excellent Technologies durch 
BMVIT, BMWFJ, das Land Wien gefördert. Das Programm COMET wird durch die FFG abgewickelt.

www.ffg.at/comet

25 Years of Software Obfuscation – 
Can It Keep Pace with Progress in Code Analysis?

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, 
Edgar Weippl

f�9G�RTGUGPV�C�PQXGN�ENCUUKƂECVKQP�QH�TGCN�NKHG�CVVCEM�UEGPCTKQU�KP�VJG�
 context of code obfuscation, derived from a careful analysis of past 
 security incidents involving obfuscated programs

f�9G�ƂTUV�FKUVKPIWKUJ�DGVYGGP�XCTKQWU�CPCN[UKU�VGEJPKSWGU�VJCV�CP�
 attacker is willing to employ during his attack; then we deal with 
 different aims of an attacker.

Results

Conclusions

f�While, at least in theory, completeness of code analysis seems possible 
 (and most of the analysis approaches introduced in academia indeed 
� YQTM�HQT�UOCNN�CPF�URGEKƂE�GZCORNGU���NCTIG�TGCN�YQTNF�RTQITCOU�ECP�DG
� EQPUKFGTGF�UKIPKƂECPVN[�JCTFGT�VQ�CPCN[\G�

f�A major limiting factor for code analysis is that the high complexity of 
 analysis problems often exceeds resource constrains available for the 
 analyst, thus making it fail for complex programs.

f�6JGTGHQTG��XGT[�UKORNG�QDHWUECVKQP�VGEJPKSWGU�ECP�UVKNN�DG�SWKVG�
� GHHGEVKXG�CICKPUV�CPCN[UKU�VGEJPKSWGU�GORNQ[KPI�RCVVGTP�OCVEJKPI�QT�
 static analysis, which explains the unbroken popularity of obfuscation 
 among malware writers.

f�Dynamic analysis methods, in particular if assisted by a human analyst, 
 are much harder to cope with; this makes code obfuscation for the 
 purpose of intellectual property protection highly challenging.

Figure 1: Analysis of the strength of code obfuscation classes in different attack scenarios 


.&���.QECVKPI�&CVC��.%���.QECVKPI�%QFG��'%���'ZVTCEVKPI�%QFG��7%���7PFGTUVCPFKPI�%QFG��

Survey Motivation

f�Code obfuscation has always been a highly controversially discussed 
 research area

f�While theoretical results indicate that provably secure obfuscation in 
 general cannot be achieved, many application areas (e.g., malware, 
� EQOOGTEKCN�UQHVYCTG��GVE���UJQY�VJCV�EQFG�QDHWUECVKQP�KU�KPFGGF�
 employed in practice

f�Still, it remains unclear to what extent today's code obfuscation state of
 the art can keep up with the progress in code analysis and where we 
 stand in the arms race between attackers and defenders

f�Combining these two concepts, we arrive at attack scenarios, which are 
 analyzed in the context of various types of code obfuscation.

f�As not all combinations are reasonable (e.g., pattern matching provides 
� KPHQTOCVKQP�QP�VJG�EQFG�DWV�ECPPQV�DG�WUGF�HQT�GZVTCEVKPI�EQFG���C�VQVCN�
 of 14 scenarios must be considered.

Table 1: Code analysis categories and attacker’s aims
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Cyclomatic number	(McCabe,	1976)
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• control	flow	complexity

V(cfg)	=	#edges	−	#nodes	+		2	*	#connected	components

• single	components:	V(cfg)	=	#edges	−	#nodes	+	2

• related	to	the	number	of	linearly	independent	paths

• related	to	number	of	tests	needed	to	invoke	all	pathsMC CABE: A COMPLEXITY MEASURE

Theorem 1 is applied to G in the following way. Imagine that
the exit node (f) branches back to the entry node (a). The
control graph G is now strongly connected (there is a path
joining any pair of arbitrary distinct vertices) so Theorem 1
applies. Therefore, the maximum number of linearly indepen-
dent circuits in G is 9-6+2. For example, one could choose
the following 5 independent circuits in G:

Bi: (abefa), (beb), (abea), (acfa), (adcfa).

It follows that Bi forms a basis for the set of all circuits in G
and any path through G can be expressed as a linear combina-
tion of circuits from Bi. For instance, the path (abeabebebef)
is expressable as (abea) +2(beb) + (abefa). To see how this
works its necessary to number the edges on G as in

10,

Now for

follows:

(abefa)
(beb)
(abea)
(acfa)
(adcfa)

each member of the basis Bi associate a vector as

1 23456
1 0 0 1 0 0
000 1 1 0
1 00 1 00
0 1 0 0 0 1
00 1 00 1

7 8 9 10
0 1 0 1
000 0
0 00 0

000 1
1 00 1

The path (abea(be)3 fa) corresponds to the vector 200420011 1
and the vector addition of (abefa), 2(beb), and (abea) yields
the desired result.
In using Theorem 1 one can choose a basis set of circuits

that correspond to paths through the program. The set B2 is a

basis of program paths.

B2: (abef), (abeabef), (abebef), (acf), (adcf),

Linear combination of paths in B2 will also generate any path.
For example,

(abea(be)3f) = 2(abebef) - (abef)

and

(a(be)2abef) = (a(be)2f) + (abeabef) - (abef).

The overall strategy will be to measure the complexity of a

program by computing the number of linearly independent
paths v(G), control the "size" of programs by setting an upper
limit to v(G) (instead of using just physical size), and use the
cyclomatic complexity as the basis for a testing methodology.
A few simple examples may help to illustrate. Below are the

control graphs of the usual constructs used in structured pro-
grammning and their respective complexities.

CONTROL STRUCTURE

SEQUENCE

IF THEN ELSE

WHILE

UNTIL

CYCLOMATIC COMPLEXITY
*v = e - n + 2p

v = 1 - 2 + 2 = 1

v = 4 - 4 + 2 = 2

v = 3 - 3 + 2 = 2

v = 3 - 3 + 2 = 2

Notice that the sequence of an arbitrary number of nodes al-
ways has unit complexity and that cyclomatic complexity
conforms to our intuitive notion of "minimum number of
paths." Several properties of cyclomatic complexity are stated
below:

1) v(G)>1.
2) v(G) is the maximum number of linearly independent

paths in G; it is the size of a basis set.
3) Inserting or deleting functional statements to G does not

affect v(G).
4) G has only one path if and only if v(G) = 1.
5) Inserting a new edge in G increases v(G) by unity.
6) v(G) depends only on the decision structure of G.

III. WORKING EXPERIENCE WITH THE
COMPLEXITY MEASURE

In this section a system which automates the complexity
measure will be described. The control structures of several
PDP-10 Fortran programs and their corresponding complexity
measures will be illustrated.
To aid the author's research into control structure complex-

ity a tool was built to run on a PDP-10 that analyzes the
structure of Fortran programs. The tool, FLOW, was written
in APL to input the source code from Fortran files on disk.
FLOW would then break a Fortran job into distinct subrou-
tines and analyze the control structure of each subroutine. It
does this by breaking the Fortran subroutines into blocks that
are delimited by statements that affect control flow: IF, GOTO,
referenced LABELS, DO, etc. The flow between the blocks is
then represented in an n by n matrix (where n is the number
of blocks), having a 1 in the i-jth position if block i can branch
to block j in 1 step. FLOW also produces the "blocked"' listing
of the original program, computes the cyclomatic complexity,
and produces a reachability matrix (there is a 1 in the i-jth
position if block i can branch to block i in any number of
steps). An example of FLOW'S output is shown below.

IMPLICIT INTEGER(A-Z)
COMMON / ALLOC / MEM(2048),LM,LU,LV,LW,LX,LY,LQ,LWEX,

NCHARS,NWORDS
DIMENSION MEMORY(2048),INHEAD((4),ITRANS(128)
TYPE 1

1 FORMATCDOMOLKI STRUCTURE FILE NAME?" $)
NAMDML= S
ACCEPT 2,NAMDML

2 FORMAT(A5)
CALL ALCHAN ( ICHAN)
CALL IFILE(ICHAN,'DSK',NAIDML,'AT',Oo0)
CALL READB'ICHAN,INHEAD,1?2,NREAD,$990,$990)
NCHARS=INHEA1)( 1)
NWORDS =INHEAD( 2)

*The role of the variable p will be explained in Section IV. For these
examples assume p = 1.
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Cyclomatic number	(McCabe,	1976)

23

310 IEEE TRANSACTIONS ON SOFTWARE EN(

NTCT= (NCHARS+ 7 ) "NWORDS
LTOT= (NCHARS+ 5) *NWORDS

******:* BLOCK NO. 1 ********************
IF(LTOT,GT,2048) GO TO 900

****** BLOCK NO. 2 ***************************
CALL READB(ICHANT,EMORY,LTOT,NREAD,$99 0,$9S0)
.LIN=O
LU= NCHARS *NWORDS+ LM
LV=NWORDS+ LU
LW=NWORDS+ LV
LX=NWORDS+ LW
LY-NWORDS+ LX
LQ=NWORDS+ LY
LWEX=NWORDS+LQ

BLOCK NO. 3
700 I=,NWORD0************************** 2 V(G) =2

MEMORY(LWEX+I)=(MEMORY(LW+I),OR,(MEMORY(LW+I)*2))
700 CONTINUE

******** BLOCK NO. 4 *************************
CALL EXTEXT(ITRANS)
STOP

********BLOCK NO. 5 ***************************
900 TYPE 3,LTOT
3 FORNAT(STRUCTURE TOO LARGE FOR CORE; ',18,' WORDS'

t SEE COOPER /)
STOP

********BLOCK NO. 6 ************************** 2
990 TYPE $
4 FORMAT(' READ ERROR, OR STRUCTURE FILE- ERROR; J

' SEE COOPER I)
STOP
END

V(G)=3

CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 011 0 0 0 0

2 O O O O O 1 O0
32 O 1 0 0 0

4 0 0 0 1 1 0 0

5 0 0 0 0 01
6 0 0 0 0 0 0 1

7 0 000000 1 6 5

.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL CYCLOMATIC COMPLEXITY = V(G) =

CLOSURE OF CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1

3 0 0 0 1 1 1 1

4 0 0 0 1 1 1 1 7

5 0 0 0 0 0 1 1

6 0 0 0 0 0 0 1

7 0000000 8

,END

V(G)=6

At this point a few of the control graphs that were found in
live programs will be presented. The actual control graphs
from FLOW appear on a DATA DISK CRT but they are hand
drawn here for purposes of illustration. The graphs are pre-
sented in increasing order of complexity in order to suggest
the correlation between the complexity numbers and our in-
tuitive notion of control flow complexity.
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Cyclomatic number	(McCabe,	1976)

24

• Quite	some	problems:
• no	recognition	of	

familiar	structures
• what	about	obfuscated	

unstructured	CFGs?
• what	to	do	when	

functions	are	not	
identified	well?

• no	recognition	of	data	
dependencies

• what	about	object-
oriented	code?

• what	about	conditional	
statements?

• combinatoric issues

MC CABE: A COMPLEXITY MEASURE 311



Human	Comprehension	Models	(Nakamura	et	al,	2003)

25

• Comprehension	~	mental	simulation	of	a	program

• Model	the	brain,	pen	&	paper	as	a	simple	CPU

• CPU	performance	is	driven	by	misses
• cache	misses
• TLB	misses
• prediction

• So	is	the	brain

• Measure	misses	with	small	sizes	of	memory



Combine	all	of	them	(Anckaert	et	al,	2007)

26

1. code	&	code	size
• e.g.,	#instructions,	weighted	by	"complexity"

2. control	flow	complexity
3. data	flow	complexity	

• sizes	slices
• sizes	live	sets,	working	sets
• sizes	points-to	sets
• fan-in,	fan-out	
• data	structure	complexities

4. data
• application-specific

static	->	graphs

dynamic	->	traces



Example:	class	hierarchy	flattening	(Foket	et	al,	2014)
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public	class	Player	{
public	void	play(AudioStream as)	{
/*	send	as.getRawBytes()	to	audio	device	*/

}
public	void	play(VideoStream vs)	{
/*	send	vs.getRawBytes()	to	video	device	*/

}
public	static	void	main(String[]	args)	{
Player	player =	new Player();
MediaFile[]	mediaFiles =	...;
for	(MediaFile mf	:	mediaFiles)
for	(MediaStream ms	:	mf.getStreams())
if	(ms	instanceof AudioStream)
player.play((AudioStream)ms);

else	if	(ms instanceof VideoStream)
player.play((VideoStream)ms);

}
}
public	class	MP3File	extends	MediaFile {
protected	void	readFile()	{
InputStream inputStream =	...;
byte[]	data =	new	byte[...];
inputStream.read(data);
AudioStream as	=	newMPGAStream(data);
mediaStreams =	newMediaStream[]{as};
return;

}
}
public	abstract	class	MediaStream {
public	static	final	byte[]	KEY	=	...;
public	byte[]	getRawBytes()	{
byte[]	decrypted	=	new	byte[data.length];
for	(int i =	0;	i <	data.length;	i++)
decrypted[i]	=	data[i]	^	KEY[i];

return decode(decrypted);
}
protected	abstract	byte[]	decode(byte[]	data);

}

Object

MediaStream

- data : byte[]
- KEY : byte[]
# decode(byte[]) : byte[]
+ getRawBytes() : byte[]

Player

main(String[]) : void+
+ play(AudioStream) : void
+ play(VideoStream) : void

AudioStream

# audioBuffer : int[]
# decode(byte[]) : byte[]
# decodeSample() : byte[]

VideoStream

# videoBuffer : int[][]
# decode(byte[]) : byte[]
# decodeFrame() : byte[]

MP3File

# readFile() : void

XvidStream

# decodeFrame() : byte[]
DTSStream

# decodeSample() : byte[]

MP4File

# readFile() : void

# decodeSample() : byte[]
MPGAStream

MediaFile

# filePath :  String
# mediaStreams : MediaStream[]
# readFile() : void
+ getStreams() : MediaStream[]



Example:	class	hierarchy	flattening	(Foket	et	al,	2014)
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public	class	Player	implements Common	{
public	byte[] merged1(Common as)	{
/*	send	as.getRawBytes()	to	audio	device	*/

}
public	Common[] merged2(Common vs)	{
/*	send	vs.getRawBytes()	to	video	device	*/

}
public	static	void	main(String[]	args)	{
Common player	=	CommonFactory.create(…);
Common[]	mediaFiles =	...;
for	(Common mf	:	mediaFiles)
for	(Common ms	:	mf.getStreams())
if	(myCheck.isInst(0,	ms.getClass()))
player.merged1(ms);

else	if	(myCheck.isInst(1,	ms.getClass()))
player.merged2(ms);

}
}
public	class	MP3File	implements Common {
public	byte[] merged1()	{
InputStream inputStream =	...;
byte[]	data =	new	byte[...];
inputStream.read(data);
Common as	=	CommonFactory.create(…);
mediaStreams =	new Common[]{as};
return	data;

}
}
public	class	MediaStream implements Common	{
public	static	final	byte[]	KEY	=	...;
public	byte[]	getRawBytes()	{
byte[]	decrypted	=	new	byte[data.length];
for	(int i =	0;	i <	data.length;	i++)
decrypted[i]	=	data[i]	^	KEY[i];

return decode(decrypted);
}
public	byte[]	decode(byte[]	data){	…	}

}

« interface » Common
+ decode(byte[]) : byte[]
+ decodeFrame() : byte[]
+ decodeSample() : byte[]
+ getRawBytes() : byte[]
+ play(Common) : void
+ play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

XvidStream
- videoBuffer : int[][]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+ decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

MP3File
- filePath : String
- mediaStreams : Common[]
+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

- filePath : String
- mediaStreams : Common[]

MediaFile

+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+ getStreams() : Common[]

- data : byte[]
- KEY : byte[]

MediaStream

+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

Player
+ main(String[]) : void
+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+ play(Common) : void
+ play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

MP4File
- filePath : String
- mediaStreams : Common[]
+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

AudioStream
# audioBuffer : int[]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

VideoStream
# videoBuffer : int[][]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

MPGAStream
- audioBuffer : int[]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+ decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

DTSStream
- audioBuffer : int[]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+ decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]



Object-Oriented	Quality	Metrics	(Bansiya	&	Davis,	2002)	
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Tool-based	metrics:	
Example	1:	Disassembly	Thwarting	(Linn	&	Debray,	2003)

30

• Confusion	factor

with A =	ground	truth	set	of	instruction	addresses
and	P =	set	determined	by	static	disassembly
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Figure 6: Effect of “hot code threshold” on branch function conversion and execution speed

(Sections 3.4.1 and 3.4.2). We expect to have additional transfor-
mations, such as jump table spoofing (Section3.4.4), implemented
in the near future.

4. EXPERIMENTAL EVALUATION
We evaluated the efficacy of our techniques using the SPECint-

95 benchmark suite. Our experiments were run on an otherwise
unloaded 2.4 GHz Pentium IV system with 1 GB of main memory
running RedHat Linux 8.0. The programs were compiled with gcc
version egcs-2.91.66 at optimization level -O3. The programs were
profiled using the SPEC training inputs and these profiles were used
to identify any hot spots during our transformations. The final per-
formance of the transformed programs were then evaluated using
the SPEC reference inputs. Each execution time reported was de-
rived by running seven trials, removing the highest and lowest times
from the sampling, and averaging the remaining five.
We experimented with three different “attack disassemblers” to

evaluate our techniques. The first of these is the GNU objdump util-
ity which employs a straight-forward linear sweep algorithm. The
second, which we wrote ourselves, is a recursive disassembler that
incorporates a variation of speculative disassembly (see Section 2).
In addition we also provide the recursive disassembler with extra
information about the address and size of each jump table in the
program as well as the start and end address of each function. The
results obtained from this disassembler therefore serve as a lower
bound estimate of the extent of obfuscation achieved. Our third dis-
assembler is IDA Pro [13], a commercially available disassembly
tool that is generally regarded to be among the best disassemblers
available.
For each of these, the efficacy of obfuscation was measured by

computing “confusion factors” for the instructions, basic blocks,

and functions. Intuitively, the confusion factor measures the frac-
tion of program units (instructions, basic blocks, or functions) in
the obfuscated code that were incorrectly identified by a disassem-
bler. More formally, let A be the set of all actual instruction ad-
dresses, i.e., those that would be encountered when the program
is executed, and P the set of all perceived instruction addresses,
i.e., those addresses produced by a static disassembly. A P is the
set of addresses that are not correctly identified as instruction ad-
dresses by the disassembler. We define the confusion factor CF to
be the fraction of instruction addresses that the disassembler fails
to identify correctly:6

CF A P A .

Confusion factors for functions and basic blocks are calculated
anologously: a basic block or function is counted as being “in-
correctly disassembled” if any of the instructions in it is incorrectly
disassembled. The reason for computing confusion factors for ba-
sic blocks and functions as well as for instructions is to determine
whether the errors in disassembling instructions are clustered in a
small region of the code, or whether they are distributed over sig-
nificant portions of the program.
As mentioned in Section 3.4.1, we transform jumps to branch

function calls only if the jump does not occur in a “hot” basic block.
The first questions we have to address, therefore, are: how are hot
basic blocks identified, and what is the effect of different choices of
what constitutes a “hot” block on the extent of obfuscation achieved
and the performance of the resulting code? To identify the “hot,” or
6We also considered taking into account the set P A of addresses
that are erroneously identified as instruction addresses by the disas-
sembler, but rejected this approach because it “double counts” the
effects of disassembly errors.

Confusion factor (%)
PROGRAM LINEAR SWEEP (OBJDUMP) RECURSIVE TRAVERSAL COMMERCIAL (IDA PRO)

Instructions Basic blocks Functions Instructions Basic blocks Functions Instructions Basic blocks Functions
compress95 43.93 63.68 100.00 30.04 40.42 75.98 75.81 91.53 87.37
gcc 34.46 53.34 99.53 17.82 26.73 72.80 54.91 68.78 82.87
go 33.92 51.73 99.76 21.88 30.98 60.56 56.99 70.94 75.12
ijpeg 39.18 60.83 99.75 25.77 38.04 69.99 68.54 85.77 83.94
li 43.35 63.69 99.88 27.22 38.23 76.77 70.93 87.88 84.91
m88ksim 41.58 62.87 99.73 24.34 35.72 77.16 70.44 87.16 87.16
perl 42.34 63.43 99.75 27.99 39.82 76.18 68.64 84.62 87.13
vortex 33.98 55.16 99.65 23.03 35.61 86.00 57.35 74.55 91.29
Geo. mean 39.09 59.34 99.75 24.76 35.69 74.43 65.45 81.40 84.97

Figure 7: Efficacy of obfuscation: confusion factors (θ 1 0)

“frequently executed,” basic blocks, we start with a (user-defined)
fraction θ (0 0 θ 1 0) that specifies what fraction of the total
number of instructions executed at runtime should be accounted for
by “hot” basic blocks. For example, θ 0 8 means that hot blocks
should account for at least 80% of all the instructions executed by
the program. More formally, let the weight of a basic block be
the number of instructions in the block multiplied by its execution
frequency, i.e., the block’s contribution to the total number of in-
structions executed at runtime. Let tot instr ct be the total number
of instructions executed by the program, as given by its execution
profile. Given a value of θ, we consider the basic blocks b in the
program in decreasing order of execution frequency, and determine
the largest execution frequency N such that

∑
b:freq b N

weight b θ tot instr ct

Any basic block whose execution frequency is at least N is consid-
ered to be hot.
The effect of varying the hot code threshold θ on performance

(both obfuscation and speed) is shown in Figure 6. Figure 6(a)
shows the fraction of candidates that are converted to branch func-
tion calls at different thresholds; this closely tracks the overall con-
fusion factors achieved. Figure 6(b) shows the concomitant degra-
dation in performance. It can be seen, from Figure 6(a), that most
programs have a small and well-defined hot spot, and as a result
varying the threshold from a modest 0.70 to a value as high as 1.0
does not dramatically affect the number of candidates converted.
The benchmark that is affected the most is gcc, and even here over
79% of the candidates are converted at θ 1 0. On average, about
91% of the candidates are converted at θ 1 0. However, as il-
lustrated in Figure 6(b), varying the hot code threshold has a sig-
nificant effect on execution speed. For example, at θ 0 70 the
programs slow down by a factor of 3.67 on average, with the li
benchmark experiencing the largest slowdown, by a factor of 5.14.
However, as θ is increased the slowdown drops off quickly, to a fac-
tor of 3.14 at θ 0 9 and 1.62 at θ 1 0. In summary, choosing a
threshold θ of 1.0 still results in most of the candidate blocks in the
program being converted to branch function calls without excessive
performance penalty. For the purposes of this paper, therefore, we
give measurements for θ 1 0.
Figure 7 shows the efficacy of our obfuscation transformations

for both of the disassembly methods discussed in Section 2. The
confusion factors achieved for linear sweep disassembly are quite
modest: on average, 39% of the instructions, 59% of the basic
blocks, and nearly 100% of the functions are incorrectly disassem-
bled. For recursive traversal, the confusion factors are somewhat
lower because in this case the disassembler can understand and deal
with control flow somewhat better than with linear sweep and as a

EXECUTION TIME (SECS)
PROGRAM Original Obfuscated Slowdown

T0 T1 T1 T0
compress95 34.49 34.44 1.00
gcc 23.27 23.23 1.00
go 53.17 53.08 1.00
ijpeg 40.13 40.15 1.00
li 26.50 42.91 1.62
m88ksim 28.18 30.02 1.07
perl 28.62 37.71 1.32
vortex 48.84 49.05 1.00
Geo. mean 1.13

Figure 8: Effect of obfuscation on execution speed (θ 1 0)

last resort actually reverts to linear sweep for the speculative dis-
assembly of undisassembled code. Nevertheless, we find that, on
average, over 25% of the instructions in the program incur disas-
sembly errors. As a result, over 35% of the basic blocks and close
to 74% of the functions, on average, are incorrectly disassembled
using this disassembly method. This is achieved at the cost of a
13% penalty in execution speed (see Figure 8).
The recursive traversal data reported in Figure 7 are actually

quite conservative since these were gathered using our own recur-
sive disassembler which, as mentioned before, is supplied with ex-
tra information to avoid unduly optimistic results. To evaluate the
efficacy of our techniques in a more realistic situation, we used a
commercial disassembly tool, IDA Pro version 4.3x [13], which is
widely considered to be the most advanced disassembler available.
The results of this experiment are reported in Figure 7. It can be
seen that this tool fails on most of the program: close to 65% of the
instructions, and about 85% of the functions in the program, are
disassembled incorrectly. Part of the reason for this high degree of
failure is that IDA Pro only disassembles addresses that (it believes)
can be guaranteed to be instruction addresses. This has two effects:
first, large portions of the code that are reached by branch function
addresses are simply not disassembled, being presented instead to
the user as a jumble of hex data; and second, the location imme-
diately following a branch function call is treated as an address to
which control returns, and this causes some junk bytes to be erro-
neously disassembled. Overall, this shows that our techniques are
effective even against state-of-the-art disassembly tools.
Finally, Figure 9 shows the impact of obfuscation on code size,

both in terms of the number of instructions (which increases, for
example, due to branch flipping), as well as the number of bytes
occupied by the text section. The latter includes the effects of the
new instructions inserted as well as all junk bytes added to the pro-
gram. Overall, it can be seen that there is a 20% increase in the



Example	2:	Patch	Tuesday	(Coppens	et	al,	2013)
binary	v1 binary	v2

vulnerability

foo()	v1

GUI	diffing	tool

foo()	v2

manual	code	
inspection

31

Exploit	Wednesday



0% 90% 99% 99.9% 100%

0%

20%

40%

60%

80%

100%
Re

ca
ll

Pruning

BinDiff on	Patch	Tuesday

32



Software	Diversification

binary	v1

src v1

compiler

binary	v2

diversifying	compiler

src v2

33



Bindiff on	Patch	Tuesday

34



BinDiff on	Diversified	Code

0% 90% 99% 99.9% 100%

0%

20%

40%

60%

80%

100%
Re

ca
ll

Pruning
35



Other	tools

36

bzip2 & &png_beta&
png_debian &soplex&recall& recall&

TurboDiff& BinDiff&

0%& 20%& 40%& 60%& 80%& 100%&0%& 20%& 40%& 60%& 80%& 100%&

a&

b&

e&

f&

g&

g&

g&

pruning&factor&
0%& 90%& 99%& 99.9%& 100%&

pruning&factor&
0%& 90%& 99%& 99.9%& 100%&

h&

i&

set&1:&&
filter&completely&
idenGcal&blocks&

d&set&1':&
filter&matched&&
instrucGons&

set&2:&filter&&
completely&idenGcal&
and&mutated&blocks&

set&1&&
+&heur&1&

set&2&
+&heur&1&

set&1&&
+&heur&3&

set&2&&
+&heur&3&

set&1&&
+&heur&2&

set&2&
+&heur&2&

set&2&&
+&heur&1,&2&&

set&2&+&&
heur&1,&2,&5&

set&1'&&
+&heur&4&

set&1'&&
+&heur&1&

set&1'&&+&
&heur&1,&4&

set&1'&+&heur&3&

set&1'&&+&
heur&1,&3&

set&1'&+&&
heur&2&

set&1'&&+&
heur&2,&4&

set&1'&&+&&
heur&1,&2,&4&

set&1'&+&&
heur&1,&2,&4,&5&

c&
h&

Fig. 4: Pruning factors (bars) and recalls (lines) obtained on undiversified binaries

however, because all syntactic changes in this use case are semantic changes. When such a minimal
security fix involving only changed constants is combined with other (non-related) fixes as in png debian,
the patch includes many more syntactic mutations, which prevents it from being used as a shortcut.

Considering only the combinations of tools and heuristics with recalls over 60%, the highest pruning
factors obtained with BinDi↵ are 99.988% ( i ), 99.986% ( j ) and 99.909% ( e ). As the fractions of
irrelevant instructions in those cases are 99.997%, 99.986%, and 99.923% resp., BinDi↵ proves to be able
to prune more than 99.98% of all irrelevant instructions for those three use cases.

This demonstrates, for the first time, that for some types of patches and undiversified code, di�ng
tools and heuristics are indeed highly valuable cracker tools. For other types of patches, however, they
are much less e↵ective. Moreover, as a cracker does typically not know beforehand which types of patches
have been applied, he will be hindered by not being able to fine-tune his heuristics.

Diversification

To study the impact of diversification, we used the diversifier Proteus [1] that comes with the free and
open Diablo link-time rewriting framework (http://diablo.elis.ugent.be). This tool supports a number

7
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• Which	attack	methods	are	more	likely	to	succeed?
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• Very	hard	to	set	up	and	get	right
• with	students:	cheap	but	representative?
• with	experts:	expensive,	but	controlled?
• what	to	test?	(Dunsmore &	Roper,	2000)

• maintenance
• recall
• subjective	rating
• fill	in	the	blank
• mental	simulation
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that some limited collaboration on experimental
results would emulate real world conditions pres-
ent during actual software exploitation activities.
Test subjects were provided with Program Set B
during the afternoon session of the reverse engi-
neering experiment. The experiment developers
were again present to observe any interactions
between test subjects.

To further observe the test subject activities
during the execution of the reverse engineering
experiment, the test developers employed an
automated screen capture tool (Camtasia) to pro-
vide a permanent record of activities. The reverse
engineering experiment platform involved an
Intel-based computer executing Linux Redhat 7.2
within a VMWare virtual environment hosted on
Windows NT4. This enabled the complete experi-
mental environment to be retained for future
analysis and included Bash histories of command
line instructions, and all temporary and history
files arising from Internet accesses. The screen
captures, Bash histories, temporary and history
files coupled with the initial questionnaire and
tutorial worksheets, provide a detailed accounting
of the test subject activities.

At the completion of Program Set B the test
subjects were provided an exit questionnaire to
enable post-experiment assessment. The exit
questionnaire assessed the amount of materials
supplied on the reading list that were actually used
by test subjects during the experiment along with
general comments pertaining to the various stages
of the reverse engineering experiment.

Results

The measurements collected during the reverse
engineering experiment are analyzed to validate
the two assertions defined in the beginning of this
paper (section Assertions).

Education/technical ability

The first assertion to be validated by the experi-
mental results concerned whether the use of
a statistical model could illustrate the relationship
between education and technical ability of the
software exploiter and their ability to successfully
reverse engineer a software product. This assertion

Table 1 Reverse engineering experiment framework

Session Event Test
object

Program
function

Task Duration
(min)

Total
duration (min)

Morning
session

Initial assessment
Program Set A
(debug option enabled)

1 Hello World Static 15 35
Dynamic 10
Modify 10

2 Date Static 10 30
Dynamic 10
Modify 10

3 Bubble Sort Static 15 45
Dynamic 15
Modify 15

4 Prime Number Static 15 45
Dynamic 15
Modify 15

Lunch

Afternoon
session

Program Set B
(debug option disabled)

5 Hello World Static 10 30
Dynamic 10
Modify 10

6 Date Static 10 30
Dynamic 10
Modify 10

7 GCD Static 15 45
Dynamic 15
Modify 15

8 LIBC Static 15 45
Dynamic 15
Modify 15

Exit questionnaire

An empirical examination of the reverse engineering process for binary files 225
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a consistent and repeatable fashion. The 10 test
subjects participating in the actual reverse
engineering experiment, although representing
a relatively small data set, provide the basis of
a preliminary assessment as to the primary factors
that affect the software reverse engineering pro-
cess. The reverse engineering experiment provides
quantitative evidence that there is a relationship
between the education/technical ability of the
software exploiter and their ability to successfully
reverse engineer a software product. This evi-
dence provides the foundation for modelling
of this relationship using existing predictive mod-
els. Development and maturation of a reverse
engineering model that characterizes the software

exploitation process will enable commercial soft-
ware product developers to quantitatively predict
the time following product deployment when it is
anticipated that a software exploiter would have
achieved a given exploitation end goal.

The reverse engineering experiment also pro-
vides quantitative evidence that industry accepted
source code size and complexity metrics are not
suitable for characterizing the size and complexity
of binary code files pursuant to estimating the
time required to perform software exploitation
activities. Literary research conducted at the
commencement of this project did not identify
binary size and complexity metrics that could have
been used instead of the source code size and

Table 3 Source code metrics debug enabled

Source program Hello World Date Bubble Sort Prime Number Correlation

Test object 1 2 3 4

Mean grade
per test object

1.483 1.300 0.786 0.867

Metric

Lines of code 6 10 9 21 !0.5802
Software lengtha 7 27 14 33 !0.3958
Software vocabularya 6 14 11 15 !0.5560
Software volumea 18 103 48 130 !0.4006
Software levela 0.667 0.167 2.5 0.094 !0.4833
Software difficultya 1.499 5.988 5.988 10.638 !0.7454
Efforta 27 618 120 1435 !0.3972
Intelligencea 12 17 19 15 !0.6744
Software timea 0.001 0.001 0.001 0.001 0
Language levela 8 2.86 7.68 1.83 0.1909
Cyclomatic complexity 1 1 1 3 !0.4802

a Halstead metrics.

Table 4 Source code metrics debug disabled

Source program Hello World Date GCD LIBC Correlation

Test object 5 6 7 8

Mean grade per test object 1.350 1.558 1.700 1.008

Metric

Lines of code 6 10 49 665 !0.3821
Software lengtha 7 27 40 59 !0.3922
Software vocabularya 6 14 20 21 !0.0904
Software volumea 18 103 178 275 !0.4189
Software levela 0.667 0.167 0.131 0.134 !0.1045
Software difficultya 1.499 5.988 7.633 7.462 0.0567
Efforta 27 618 2346 5035 !0.5952
Intelligencea 12 17 17 19 !0.1935
Software timea 0.001 0.001 0.2 0.4 !0.5755
Language levela 8 2.86 2.43 2.3 !0.0743
Cyclomatic complexity 1 1 3 11 !0.7844

a Halstead metrics.

An empirical examination of the reverse engineering process for binary files 227
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• Subjects	described	in	detail

Fig. 1. Seniority of the participants

Fig. 2. Roles covered in the industry

one in software engineering and the other in computer security.
The program is often selected by professionals who, after a
few years in the software industry, are seeking a higher degree
to advance in their career. Most of these students are taking
evening classes while working full time as software developers.

We surveyed the background of the participants by means
of a questionnaire administered at the beginning of the exper-
iment. As shown in Figure 1, seven participants have at least
one year of experience as employees in the software industry
and four have a seniority that is greater than three years.
Figure 2 describes the roles covered by the participants in their
occupation. All of them have worked as developers, and as
many as seven also have experience as software designers. Four
of the participants also reported some experience as testers,
which is a useful asset for the tasks they carried out in the
experiment, especially for penetration testing. There are more
roles than participants, since participants may work in multiple
different roles over the course of their career.

We also investigated the programming skills and security
expertise of the participants, and the results are reported in
Figure 3. Good Java programming skills are important for the
static analysis task as the code needs to be inspected in order to
validate the warnings produced by the analysis tool. Two thirds

Fig. 3. Skill levels of the participants

of our participants claimed to be skilled Java programmers,
although we did not test their skills directly. Concerning their
security knowledge, the participants are not complete novices,
although two thirds admit to having limited expertise and only
one third claimed adequate security skills.

In summary, despite their enrollment in a degree program,
the participants have a profile which is closer to that of
professionals than of students. Indeed, they have substantial
industrial experience and advanced development skills. Clearly,
the participants are not entirely representative of the population
of security analysts, due to their sub-optimal security skills.
However, they have the necessary maturity to substantiate
the validity of the results of this work, which focuses on
professionals beginning their activity in a security team.

C. Experimental Objects

For this experiment, we needed to select two approximately
equivalent applications that were written in a language with
which the students were familiar. We also needed vulnerabili-
ties found in the applications to be of types that the students
had studied. In order for the applications to be approximately
equivalent, we selected them from the same application do-
main: weblogs written in Java. In order for the experiment
to be authentic, we decided to use open source applications
that were currently in use instead of using applications created
solely for the purposes of this experiment.

We selected two weblog applications for the experi-
ment: Apache Roller (roller.apache.org) and Pebble (pebble.
sourceforge.net). Both Roller and Pebble are comprehensive
blogging platforms, with support for templates, feeds, multiple
users, threaded comments, and plugins. Both applications are
currently in development and have a history of vulnerabilities
recorded in public databases. The applications are approxi-
mately of the same size and complexity.

1) Pebble: Pebble 2.6.3, the version used in the experiment,
consists of 56,168 executable lines of code as measured by
Fortify SCA. Version 2.6.4 is the current version (not available
at the time of the experiment) and 37 versions of Pebble have
been released since version 1.0 was released in 2003. Pebble
stores its data in XML files rather than in a SQL database.
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• Training	and	experiment	described	in	detail

Fig. 4. Design of the experiment

• URL: the URL through which the vulnerability is
exploitable.

• Input Field: the input field(s) used to exploit the
vulnerability.

• Input Data: the input data that is necessary to exploit
the vulnerability.

• Description: the nature of the vulnerability and what
impact it would have on the application. The partici-
pants should also state any assumptions that are made
in determining that this is a vulnerability.

The above documentation contains all the information that is
necessary to replicate the attack described by the participant.

E. Design of the Experiment

As shown in Figure 4, the experiment is organized in two
laboratories. In the first lab, five randomly chosen participants
analyzed the Pebble application by means of static analysis,
while the other four analyzed the same application via penetra-
tion testing. In the second lab, the Apache Roller application
was analyzed, and participants were assigned to the treatment
they did not apply in the previous lab.

In summary, we chose a paired comparison design (each
participant is administered both treatments) but we deemed
that randomizing the order of the treatments would have
not been enough to counter the learning effect and, hence,
used two objects, i.e., applications. The two objects can be
considered equivalent for the sake of the experiment, as the
two applications provide the same functionality (blogging) and
have similar feature sets. The two applications also have a
comparable size of about 60,000 executable lines of code.
Furthermore, they have the same maturity as both have about
10 years of development history. We also assume that the two
applications have the same complexity. This assumption has
been validated by means of a specific question in the ques-
tionnaire that we administered at the end of the experiment.
To the question “Did you find that the two applications were
of comparable complexity?”, the participants replied that they
agreed: the median answer is 3 (‘agree’) on a 4-value scale
ranging from 1 (strongly disagree) to 4 (strongly agree).

TABLE I. TERMINOLOGY.

Measure Definition Formula Wish
TP True positive An actual vulnerability is correctly

reported by the participant (a.k.a.
correct result)

high

FP False positive A vulnerability is reported by the
participant but it is not present in
the code (a.k.a. error, incorrect re-
sult, false alarm)

low

TOT Reported vul-
nerabilities

The total number of vulnerabilities
reported by the participant

TP + FP –

TIME Time The time (in hours) that it takes the
participant to complete the task

low

PREC Precision Percentage of the reported vulner-
abilities that are correct

TP / TOT high

PROD Productivity Number of correct results produced
in a unit of time

TP / TIME high

F. Hypotheses

According to the goals mentioned at the beginning of this
section, we are interested in both the quality of the analysis
results and the productivity of the analyst. The quality is
primarily characterized by the number of correct results (the
actual vulnerabilities that are found) as more results mean
a more complete analysis and, consequently, a more secure
application. Another important aspect is the number of errors
(false alarms) as they result in a waste of resources for
both the analysis team and the quality assurance team that
is tasked with the bug fixing. As summarized in Table I, the
correct results are called true positives (TP) and the errors are
called false positives (FP). Next to the total number of true
positives, we quantify the quality by means of the precision
(PREC), i.e., the ratio of correct results over the total amount
of vulnerabilities reported. The measure of precision takes
into account the number of errors but it scales them with
respect to the total amount of results. This corresponds to the
reasonable assumptions that it is more likely to make mistakes
if more work is done. The productivity (PROD) is quantified
with respect to only correct results. Therefore, it is calculated
as the number of true positives produced per hour.

According to the above definitions, we refine the overall
research goals into the following three null hypotheses. First,
we wonder whether, on average, the two techniques produce
the same amount of true positives.

HTP
0 : µ{TPSA} = µ{TPPT}

Assuming that the discovered vulnerabilities have a compara-
ble importance, a technique that unearths more vulnerabilities
is clearly to be preferred. Note that in our experiment, the
task of the participants is to focus on the vulnerabilities of
highest importance (as defined by OWASP) and therefore, the
above-mentioned assumption holds in this study.

Moreover, we are interested in knowing whether, on
average, the two techniques have the same precision.

HPREC
0 : µ{PRECSA} = µ{PRECPT}

A more precise technique implies that less “garbage” is present
in the analysis results, and therefore less effort is wasted when
the recommendations of the analysis report are followed in
order to fix the security flaws.

Finally, we question whether, on average, the two
techniques yield the same productivity.
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• Rigorous	statistical	analysis	of	the	results

Fig. 4. Design of the experiment

• URL: the URL through which the vulnerability is
exploitable.

• Input Field: the input field(s) used to exploit the
vulnerability.

• Input Data: the input data that is necessary to exploit
the vulnerability.

• Description: the nature of the vulnerability and what
impact it would have on the application. The partici-
pants should also state any assumptions that are made
in determining that this is a vulnerability.

The above documentation contains all the information that is
necessary to replicate the attack described by the participant.

E. Design of the Experiment

As shown in Figure 4, the experiment is organized in two
laboratories. In the first lab, five randomly chosen participants
analyzed the Pebble application by means of static analysis,
while the other four analyzed the same application via penetra-
tion testing. In the second lab, the Apache Roller application
was analyzed, and participants were assigned to the treatment
they did not apply in the previous lab.

In summary, we chose a paired comparison design (each
participant is administered both treatments) but we deemed
that randomizing the order of the treatments would have
not been enough to counter the learning effect and, hence,
used two objects, i.e., applications. The two objects can be
considered equivalent for the sake of the experiment, as the
two applications provide the same functionality (blogging) and
have similar feature sets. The two applications also have a
comparable size of about 60,000 executable lines of code.
Furthermore, they have the same maturity as both have about
10 years of development history. We also assume that the two
applications have the same complexity. This assumption has
been validated by means of a specific question in the ques-
tionnaire that we administered at the end of the experiment.
To the question “Did you find that the two applications were
of comparable complexity?”, the participants replied that they
agreed: the median answer is 3 (‘agree’) on a 4-value scale
ranging from 1 (strongly disagree) to 4 (strongly agree).

TABLE I. TERMINOLOGY.

Measure Definition Formula Wish
TP True positive An actual vulnerability is correctly

reported by the participant (a.k.a.
correct result)

high

FP False positive A vulnerability is reported by the
participant but it is not present in
the code (a.k.a. error, incorrect re-
sult, false alarm)

low

TOT Reported vul-
nerabilities

The total number of vulnerabilities
reported by the participant

TP + FP –

TIME Time The time (in hours) that it takes the
participant to complete the task

low

PREC Precision Percentage of the reported vulner-
abilities that are correct

TP / TOT high

PROD Productivity Number of correct results produced
in a unit of time

TP / TIME high

F. Hypotheses

According to the goals mentioned at the beginning of this
section, we are interested in both the quality of the analysis
results and the productivity of the analyst. The quality is
primarily characterized by the number of correct results (the
actual vulnerabilities that are found) as more results mean
a more complete analysis and, consequently, a more secure
application. Another important aspect is the number of errors
(false alarms) as they result in a waste of resources for
both the analysis team and the quality assurance team that
is tasked with the bug fixing. As summarized in Table I, the
correct results are called true positives (TP) and the errors are
called false positives (FP). Next to the total number of true
positives, we quantify the quality by means of the precision
(PREC), i.e., the ratio of correct results over the total amount
of vulnerabilities reported. The measure of precision takes
into account the number of errors but it scales them with
respect to the total amount of results. This corresponds to the
reasonable assumptions that it is more likely to make mistakes
if more work is done. The productivity (PROD) is quantified
with respect to only correct results. Therefore, it is calculated
as the number of true positives produced per hour.

According to the above definitions, we refine the overall
research goals into the following three null hypotheses. First,
we wonder whether, on average, the two techniques produce
the same amount of true positives.

HTP
0 : µ{TPSA} = µ{TPPT}

Assuming that the discovered vulnerabilities have a compara-
ble importance, a technique that unearths more vulnerabilities
is clearly to be preferred. Note that in our experiment, the
task of the participants is to focus on the vulnerabilities of
highest importance (as defined by OWASP) and therefore, the
above-mentioned assumption holds in this study.

Moreover, we are interested in knowing whether, on
average, the two techniques have the same precision.

HPREC
0 : µ{PRECSA} = µ{PRECPT}

A more precise technique implies that less “garbage” is present
in the analysis results, and therefore less effort is wasted when
the recommendations of the analysis report are followed in
order to fix the security flaws.

Finally, we question whether, on average, the two
techniques yield the same productivity.
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exploitable.
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• Input Data: the input data that is necessary to exploit
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• Description: the nature of the vulnerability and what
impact it would have on the application. The partici-
pants should also state any assumptions that are made
in determining that this is a vulnerability.

The above documentation contains all the information that is
necessary to replicate the attack described by the participant.

E. Design of the Experiment

As shown in Figure 4, the experiment is organized in two
laboratories. In the first lab, five randomly chosen participants
analyzed the Pebble application by means of static analysis,
while the other four analyzed the same application via penetra-
tion testing. In the second lab, the Apache Roller application
was analyzed, and participants were assigned to the treatment
they did not apply in the previous lab.

In summary, we chose a paired comparison design (each
participant is administered both treatments) but we deemed
that randomizing the order of the treatments would have
not been enough to counter the learning effect and, hence,
used two objects, i.e., applications. The two objects can be
considered equivalent for the sake of the experiment, as the
two applications provide the same functionality (blogging) and
have similar feature sets. The two applications also have a
comparable size of about 60,000 executable lines of code.
Furthermore, they have the same maturity as both have about
10 years of development history. We also assume that the two
applications have the same complexity. This assumption has
been validated by means of a specific question in the ques-
tionnaire that we administered at the end of the experiment.
To the question “Did you find that the two applications were
of comparable complexity?”, the participants replied that they
agreed: the median answer is 3 (‘agree’) on a 4-value scale
ranging from 1 (strongly disagree) to 4 (strongly agree).

TABLE I. TERMINOLOGY.

Measure Definition Formula Wish
TP True positive An actual vulnerability is correctly

reported by the participant (a.k.a.
correct result)

high

FP False positive A vulnerability is reported by the
participant but it is not present in
the code (a.k.a. error, incorrect re-
sult, false alarm)

low

TOT Reported vul-
nerabilities

The total number of vulnerabilities
reported by the participant

TP + FP –

TIME Time The time (in hours) that it takes the
participant to complete the task

low

PREC Precision Percentage of the reported vulner-
abilities that are correct

TP / TOT high

PROD Productivity Number of correct results produced
in a unit of time

TP / TIME high

F. Hypotheses

According to the goals mentioned at the beginning of this
section, we are interested in both the quality of the analysis
results and the productivity of the analyst. The quality is
primarily characterized by the number of correct results (the
actual vulnerabilities that are found) as more results mean
a more complete analysis and, consequently, a more secure
application. Another important aspect is the number of errors
(false alarms) as they result in a waste of resources for
both the analysis team and the quality assurance team that
is tasked with the bug fixing. As summarized in Table I, the
correct results are called true positives (TP) and the errors are
called false positives (FP). Next to the total number of true
positives, we quantify the quality by means of the precision
(PREC), i.e., the ratio of correct results over the total amount
of vulnerabilities reported. The measure of precision takes
into account the number of errors but it scales them with
respect to the total amount of results. This corresponds to the
reasonable assumptions that it is more likely to make mistakes
if more work is done. The productivity (PROD) is quantified
with respect to only correct results. Therefore, it is calculated
as the number of true positives produced per hour.

According to the above definitions, we refine the overall
research goals into the following three null hypotheses. First,
we wonder whether, on average, the two techniques produce
the same amount of true positives.

HTP
0 : µ{TPSA} = µ{TPPT}

Assuming that the discovered vulnerabilities have a compara-
ble importance, a technique that unearths more vulnerabilities
is clearly to be preferred. Note that in our experiment, the
task of the participants is to focus on the vulnerabilities of
highest importance (as defined by OWASP) and therefore, the
above-mentioned assumption holds in this study.

Moreover, we are interested in knowing whether, on
average, the two techniques have the same precision.

HPREC
0 : µ{PRECSA} = µ{PRECPT}

A more precise technique implies that less “garbage” is present
in the analysis results, and therefore less effort is wasted when
the recommendations of the analysis report are followed in
order to fix the security flaws.

Finally, we question whether, on average, the two
techniques yield the same productivity.
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contained in one of the FPR files. The participant has made an
evaluation of whether the warning is correct (i.e., a vulnerabil-
ity is indeed present in the code) or bogus. The security expert
has produced an independent assessment of the warnings in the
FPR files and his judgment is assumed to be correct. Given
the seniority level of the subject and his expertize with static
analysis, we have no reason to doubt it. Using this ‘reference
solution’, the labeling of the participant can be classified as a
true positive (TP, the warning is a vulnerability for the expert
and the participant concurs) or false positives (FP, the warning
is not a vulnerability for the expert but the participant believes
it is). The other cases are out of scope in this experiment, as
it is harder to compare to penetration testing.

For penetration testing, it is straightforward to validate
the reports of the participants. The report contains the list of
vulnerabilities discovered by the participant, each associated
with the parameters (link to the entry point, input, and so on)
that describe how to exploit the vulnerability. The security
expert has to mount the attack as it is described in the report
and verify whether it is successful (TP, true positive) or not
(FP, false positives).

The time has been tracked by means of Kimai (kimai.org,
which is a simple, online time-sheeting tool. At the beginning
of the experiment, the participants have been given a personal
login to the time tracking tool. After having logged in, the
participant had to select the activity he/she was busy with.
The time tracking could be started and paused by means of a
single button. We have pre-configured the Kimai tool with two
activities. The first activity refers to the discovery of the first
vulnerability. The second activity refers to finishing the task
after the first vulnerability has been discovered. Hence, the
total time (TIME) spent on a task is the sum of the time spent
on the two activities. The tool did not allow the participants
to define other activities. We have already used this tool in
other experiments and found that it is both very usable and
non-invasive. Also, notice that one supervisor was monitoring
the correct usage of the Kimai tool during the experiment.
Therefore, the time measures that we obtained from the logs
of Kimai are accurate.

The opinion of the participants about the two techniques
and the related tools have been extracted from the exit ques-
tionnaire and will be discussed in Section VII.

VI. DATA ANALYSIS

In order to enable the replication of this study, all the data
used in this paper is available online [11]. The data analysis is
performed with R. Given the limited sample size, the analysis
presented in this section makes use of non parametric tests.
In particular, the location shifts between the two treatments
are tested by means of the Wilcoxon signed-rank test for
paired samples. The same test is used to analyze the exit
questionnaire. A significance level of 0.05 is always used. The
95% confidence intervals are computed by means of the one-
sample Wilcoxon rank-sum test. The association between two
variables is studied by means of the Spearman rank correlation
coefficient. A correlation is considered only if the modulus
of the coefficient is at least 0.70 and the p-value of the
significance test is smaller than 0.05.

Fig. 5. Boxplot of reported results (TOT), correct results (TP) and false alarms
(FP)

A. True Positives (HTP
0 )

The left-hand side of Figure 5 summarizes the results
concerning the total number of reported vulnerabilities (TOT),
which appears to be quite different in the two treatments.
With static analysis (SA), the participants reported an average
of 14.8 vulnerabilities (standard deviation of 13.3, confidence
interval of [5, 30]). With penetration testing (PT) the average
is 3.1 vulnerabilities, which is much lower, and the standard
deviation is 2.0 (confidence interval of [2, 5]). The location
shift is not statistically significant (p-value>0.05).

As shown by the box-plot in middle of Figure 5, there is
an imbalance also for the number of correct results (TP). With
static analysis, the participants discovered an average of 9.7

confirmed vulnerabilities (standard deviation of 7.9, confi-
dence interval of [4.5, 18.5]). With penetration testing they
discovered only 2.2 confirmed vulnerabilities on average,
with a standard deviation of 1.7 and a confidence interval
of [1, 4]. The location shift is statistically significant (p-
value=0.0249). The left-hand side of Figure 6 shows that static
analysis has produced more correct results in both the Pebble
and the Apache Roller applications.

We can reject the null hypothesis HTP
0 and conclude that

static analysis produces, on average, a higher number of
correct results than penetration testing.

This conclusion is not surprising. Reviewing the applica-
tion code with the support of a security scanner can be seen
as a check-list based approach, where the participants have to
skim through a list of suggestions made by the tool. Usually,
these approaches are superior as far as the true positives
are concerned. Penetration testing, instead, does not enjoy a
similar level of guidance and it is easier for less experienced
participants to get ‘stuck’. However, having a list of warnings
in the static analysis technique might be somewhat limiting as
the scope of the analysis is bounded by the alarms produced
by the tool. The vulnerabilities reported using static analysis
were, of course, similar. Instead, vulnerabilities reported using
penetration testing differed among participants. In our study,
though, penetration testing did not find novel application-
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other experiments and found that it is both very usable and
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Therefore, the time measures that we obtained from the logs
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The opinion of the participants about the two techniques
and the related tools have been extracted from the exit ques-
tionnaire and will be discussed in Section VII.
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In order to enable the replication of this study, all the data
used in this paper is available online [11]. The data analysis is
performed with R. Given the limited sample size, the analysis
presented in this section makes use of non parametric tests.
In particular, the location shifts between the two treatments
are tested by means of the Wilcoxon signed-rank test for
paired samples. The same test is used to analyze the exit
questionnaire. A significance level of 0.05 is always used. The
95% confidence intervals are computed by means of the one-
sample Wilcoxon rank-sum test. The association between two
variables is studied by means of the Spearman rank correlation
coefficient. A correlation is considered only if the modulus
of the coefficient is at least 0.70 and the p-value of the
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The left-hand side of Figure 5 summarizes the results
concerning the total number of reported vulnerabilities (TOT),
which appears to be quite different in the two treatments.
With static analysis (SA), the participants reported an average
of 14.8 vulnerabilities (standard deviation of 13.3, confidence
interval of [5, 30]). With penetration testing (PT) the average
is 3.1 vulnerabilities, which is much lower, and the standard
deviation is 2.0 (confidence interval of [2, 5]). The location
shift is not statistically significant (p-value>0.05).

As shown by the box-plot in middle of Figure 5, there is
an imbalance also for the number of correct results (TP). With
static analysis, the participants discovered an average of 9.7

confirmed vulnerabilities (standard deviation of 7.9, confi-
dence interval of [4.5, 18.5]). With penetration testing they
discovered only 2.2 confirmed vulnerabilities on average,
with a standard deviation of 1.7 and a confidence interval
of [1, 4]. The location shift is statistically significant (p-
value=0.0249). The left-hand side of Figure 6 shows that static
analysis has produced more correct results in both the Pebble
and the Apache Roller applications.

We can reject the null hypothesis HTP
0 and conclude that

static analysis produces, on average, a higher number of
correct results than penetration testing.

This conclusion is not surprising. Reviewing the applica-
tion code with the support of a security scanner can be seen
as a check-list based approach, where the participants have to
skim through a list of suggestions made by the tool. Usually,
these approaches are superior as far as the true positives
are concerned. Penetration testing, instead, does not enjoy a
similar level of guidance and it is easier for less experienced
participants to get ‘stuck’. However, having a list of warnings
in the static analysis technique might be somewhat limiting as
the scope of the analysis is bounded by the alarms produced
by the tool. The vulnerabilities reported using static analysis
were, of course, similar. Instead, vulnerabilities reported using
penetration testing differed among participants. In our study,
though, penetration testing did not find novel application-
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analysis has produced more correct results in both the Pebble
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We can reject the null hypothesis HTP
0 and conclude that
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This conclusion is not surprising. Reviewing the applica-
tion code with the support of a security scanner can be seen
as a check-list based approach, where the participants have to
skim through a list of suggestions made by the tool. Usually,
these approaches are superior as far as the true positives
are concerned. Penetration testing, instead, does not enjoy a
similar level of guidance and it is easier for less experienced
participants to get ‘stuck’. However, having a list of warnings
in the static analysis technique might be somewhat limiting as
the scope of the analysis is bounded by the alarms produced
by the tool. The vulnerabilities reported using static analysis
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• Threats	to	validity	discusse
• conclusion	validity

• conclusions	about	the	relationship	among	variables	based	on	the	data
• internal	validity

• causal	conclusion	based	on	a	study	is	warranted
• external	validity

• generalized	(causal)	inferences
• ...



Effectiveness	&	effeciency source	code	obfuscation
(Ceccato	et	al,	2014)
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• Compare	identifier	renaming	with	opaque	predicates

• All	positive	aspects	seen	before

• Much	more	extensive	experiment

• And	still	they	screw	up	somewhat	...
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   131                 tab.setUserList(strList);
   132         }
           
   134         public void addUserToList(String strRoomName, String strUser)
   135         {
   136             RoomTabItem tab = getRoom(strRoomName);
   137             if(tab != null)
   138                 tab.addUserToList(strUser);
   139         }
           
   141         public void removeUserFromList(String strRoomName, String strUser)
   142         {
   143             RoomTabItem tab = getRoom(strRoomName);
   144             if(tab != null)
   145                 tab.removeUserFromList(strUser);
   146         }
           
   148         public void joinRoom(String strName, String strUserList)
   149         {
   150             int index = textTabPane.indexOfTab(strName);
   151             if(index == -1)
   152             {
   153                 RoomTabItem tab = new RoomTabItem(this, handler, strName);
   154                 textTabPane.addTab(strName, tab);
   155                 tab.setUserList(strUserList);
   156                 textTabPane.setSelectedComponent(tab);
   157             } else
   158             {
   159                 textTabPane.setSelectedIndex(index);
   160             }
   161         }
           
   163         public void addString(String strRoomName, String strMessage)
   164         {
   165             TabItem tab = getTabItem(strRoomName);
   166             if(tab != null)
   167                 tab.appendBasicString(strMessage);
   168         }
           
   170         public void addServerString(String strRoomName, String strMessage)
   171         {
   172             TabItem tab = getTabItem(strRoomName);
   173             if(tab != null)
   174                 tab.appendServerString(strMessage);
   175         }
           
   177         public void setRoomList(String strList)
   178         {
   179             roomListData.clear();
   180             String roomArray[] = strList.split(";");
   181             for(int x = 0; x < roomArray.length; x++)
   182                 roomListData.addElement(roomArray[x]);
           
   184         }
           
   186         public void createPrivateMessage(String strUser)
   187         {
   188             String privateTab = (new StringBuilder()).append(
                                             strPrivateMessageAppend).append(strUser).toString();
   189             int index = textTabPane.indexOfTab(privateTab);
   190             if(index == -1)
   191             {
   192                 PrivateTabItem tab = new PrivateTabItem(handler, strUser);
   193                 textTabPane.addTab(privateTab, tab);
   194                 textTabPane.setSelectedComponent(tab);
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   130                 e1.d(s1);
   131         }
           

   133         public void g(String s, String s1)
   134         {
   135             e e1 = g(s);
   136             if(e1 != null)
   137                 e1.e(s1);
   138         }
           

   140         public void h(String s, String s1)
   141         {
   142             e e1 = g(s);
   143             if(e1 != null)
   144                 e1.f(s1);
   145         }
           

   147         public void j(String s, String s1)
   148         {
   149             int i1 = F.indexOfTab(s);
   150             if(i1 == -1)
   151             {
   152                 e e1 = new e(this, C, s);
   153                 F.addTab(s, e1);
   154                 e1.d(s1);
   155                 F.setSelectedComponent(e1);
   156             } else
   157             {
   158                 F.setSelectedIndex(i1);
   159             }
   160         }
           

   162         public void k(String s, String s1)
   163         {
   164             h h1 = h(s);
   165             if(h1 != null)
   166                 h1.k(s1);
   167         }
           

   169         public void l(String s, String s1)
   170         {
   171             h h1 = h(s);
   172             if(h1 != null)
   173                 h1.l(s1);
   174         }
           

   176         public void c(String s)
   177         {
   178             H.clear();
   179             String as[] = s.split(";");
   180             for(int i1 = 0; i1 < as.length; i1++)
   181                 H.addElement(as[i1]);
           

   183         }
           

   185         public void j(String s)
   186         {
   187             String s1 = (new StringBuilder()).append(E).append(s).toString();
   188             int i1 = F.indexOfTab(s1);
   189             if(i1 == -1)
   190             {
   191                 g g1 = new g(C, s);
   192                 F.addTab(s1, g1);
   193                 F.setSelectedComponent(g1);
   194             } else
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313 }
314 }
315 Node.getI().getLeft().swap(Node.getF().getLeft());
316 } else {
317
318 Node.getH().setLeft(Node.getG().getRight());
319 port = 5610;
320 }
321 if (Node.getF() != Node.getG()) {
322 Node.getH().getRight().swap(Node.getF().getLeft());
323 host = roomListData.toString() + "for";
324 } else {
325 Node.getH().getLeft().swap(Node.getG().getRight());
326 connect();
327 }
328 } catch (Exception e) {
329 if (Node.getF() != Node.getG()) {
330 addError(textTabPane.getTitleAt(0));
331 Node.getG().setRight(Node.getI().getLeft());
332 } else {
333 Node.getF().setLeft(Node.getF().getLeft());
334 e.printStackTrace();
335 }
336 }
337 }
338 if (Node.getH() == Node.getI()) {
339 Node.getF().getLeft().swap(Node.getH().getRight());
340 return;
341 } else {
342 host = host + textTabPane.getAlignmentX();
343 Node.getF().getRight().swap(Node.getI().getRight());
344 }
345 }
346
347 public void removeUserFromList(String strRoomName, String strUser) {
348 RoomTabItem tab = null;
349 if (Node.getI() != Node.getH()) {
350 Node.getI().getLeft().swap(Node.getI().getRight());
351 tab.transferFocusUpCycle();
352 } else {
353 Node.getF().swap(Node.getI());
354 tab = getRoom(strRoomName);
355 }
356 if (Node.getI() != Node.getH()) {
357 receiver.getClass().getAnnotations();
358 Node.getH().getRight().swap(Node.getG().getLeft());
359 } else {
360 if (tab != null)
361 if (Node.getI() != Node.getH()) {
362 Node.getF().setLeft(Node.getG().getRight());
363 roomList.clearSelection();
364 } else {
365 Node.getI().swap(Node.getH());
366 tab.removeUserFromList(strUser);
367 }
368 Node.getI().getLeft().swap(Node.getF().getRight());
369 }
370 }
371
372 public void addServerString(String strRoomName, String strMessage) {
373 TabItem tab = null;
374 if (Node.getH() != Node.getI()) {
375 JTabbedPane.isLightweightComponent(null);
376 Node.getG().getRight().swap(Node.getF().getLeft());
377 } else {
378 tab = getTabItem(strRoomName);
379 Node.getF().getRight().swap(Node.getG().getRight());
380 }
381 if (Node.getG() == Node.getF()) {
382 if (tab != null)
383 if (Node.getI() != Node.getH()) {
384 roomListData.add(tab.getComponentCount(), util);
385 Node.getI().setRight(Node.getG().getRight());
386 } else {
387 tab.appendServerString(strMessage);
388 Node.getH().getRight().swap(Node.getH().getLeft());
389 }
390 Node.getG().setRight(Node.getG().getLeft());
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1.	Attackers	aim	for	assets,	layered	protections	are	only	obstacles
2.	Attackers	need	to	find	assets	(by	iteratively	zooming	in)
3.	Attackers	need	tools	&	techniques	to	build	a	program	representation,		
to	analyze,	and	to	extract	features

4.	Attackers	iteratively	build	strategy	based	on	experience	and	
confirmed	and	revised	assumptions,	incl.	on	path	of	least	resistance

5.	Attackers	can	undo,	circumvent,	or	overcome	protections
with	or	without	tampering	with	the	code

ASSET

PROTECTION	1

PROTECTION	3

PROTECTION	5



Alternative:	professional	pen-tests

•How	do	professional	hackers understand	
protected code	when	they	are	attacking
it?
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Participants
• Professional	penetration	testers	working	for	security	
companies

• Routinely involved	in	security	assessment	of	company’s	
products

• Profiles:
• Hackers	with	substantial	experience	in	the	field
• Fluent	with	state	of	the	art	tools	(reverse	engineering,	static	analysis,	
debugging,	profiling,	tracing,	…)

• Able	to	customize	existing	tools,	to	develop	plug-ins	for	them,	and	to	
develop	their	own	custom	tools

• Minimal	intrusion	(hacker	activities	can	not	be	traced)
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Experimental	procedure
• Attack	task	definition

• Description	of	the	program	to	attack,	attack	scope,	attack	goal(s)	and	
report	structure

• Monitoring	(long	running	experiment:	30	days)
• Minimal	intrusion	into	the	daily	activities	

• Could	not	be	traced	automatically	or	through	questionnaires
• Weekly	conf call	to	monitor	the	progress	and	provide	support	for	clarifying	
goals	and	tasks

• Attack	reports
• Final	(narrative)	report	of	the	attack	activities	and	results
• Qualitative	analysis
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Objects C H Java C++ Total
DRMMediaPlayer 2,595 644 1,859 1,389 6,487
LicenseManager 53,065 6,748 819 - 58,283
OTP 284,319 44,152 7,892 2,694 338,103



Data	collection
• Report	in	free	format
• Professional	hackers	were	asked	to	cover	these	topics:

1. type	of	activities	carried	out	during	the	attack;	
2. level	of	expertise	required	for	each	activity;	
3. encountered	obstacles;	
4. decision	made,	assumptions,	and	attack	strategies;	
5. exploitation	on	a	large	scale	in	the	real	world.	
6. return	/	remuneration	of	the	attack	effort;	
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Data	analysis
• Qualitative	data	analysis	method	from	Grounded	Theory

• Data	collection
• Open	coding
• Conceptualization
• Model	analysis

• Not	applicable	to	our	study:
• Immediate	and	continuous	data	analysis
• Theoretical	sampling
• Theoretical	saturation
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Open	coding
• Performed	by	7	coders	from	4	
academic	project	partners

• Autonomously	&	independently
• High	level	instructions

• Maximum	freedom	to	coders,	to	minimize	
bias

• Annotated	reports	have	been	merged
• No	unification	of	annotations,	to	
preserve	viewpoint	diversity
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Annotator
Case	study A B C D E F G Total

P 52 34 48 53 43 49 - 279
L 20 10 6 12 7 18 9 82
O 12 22 - 29 24 11 - 98

Total 84 66 54 94 74 78 9 459



Conceptualization

1. Concept	identification
• Identify	key	concepts	used	by	coders
• Organize	key	concepts	into	a	common	hierarchy

2. Model	inference
• Temporal	relations	(e.g.,	before)
• Causal	relations	(e.g.,	cause)
• Conditional	relations	(e.g.,	condition	for)
• Instrumental	relations	(e.g.,	used	to)
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Conceptualization	results:	
taxonomy	of	concepts
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Obstacle

Protection

Obfuscation

Control flow flattening

Opaque predicates

Anti debugging

White box cryptography

Execution environment

Limitations from operating system

Tool limitations

Analysis / reverse engineering

String / name analysis

Symbolic execution / SMT solving

Crypto analysis

Pattern matching

Static analysis

Dynamic analysis

Dependency analysis

Data flow analysis

Memory dump

Monitor public interfaces

Debugging

Profiling

Tracing

Statistical analysis

Di↵erential data analysis

Correlation analysis

Black-box analysis

File format analysis

Attack strategy

Attack step

Prepare the environment

Reverse engineer app and protections

Understand the app

Preliminary understanding of the app

Identify input / data format

Recognize anomalous/unexpected behaviour

Identify API calls

Understand persistent storage / file / socket

Understand code logic

Identify sensitive asset

Identify code containing sensitive asset

Identify assets by static meta info

Identify assets by naming scheme

Identify thread/process containing sensitive asset

Identify points of attack

Identify output generation

Identify protection

Run analysis

Reverse engineer the code

Disassemble the code

Deobfuscate the code*

Build the attack strategy

Evaluate and select alternative step / revise attack strategy

Choose path of least resistance

Limit scope of attack

Limit scope of attack by static meta info

Attack step

Prepare attack

Choose/evaluate alternative tool

Customize/extend tool

Port tool to target execution environment

Create new tool for the attack

Customize execution environment

Build a workaround

Recreate protection in the small

Assess e↵ort

Tamper with code and execution

Tamper with execution environment

Run app in emulator

Undo protection

Deobfuscate the code*

Convert code to standard format

Disable anti-debugging

Obtain clear code after code decryption at runtime

Tamper with execution

Replace API functions with reimplementation

Tamper with data

Tamper with code statically

Out of context execution

Brute force attack

Analyze attack result

Make hypothesis

Make hypothesis on protection

Make hypothesis on reasons for attack failure

Confirm hypothesis

Workaround

Weakness

Global function pointer table

Recognizable library

Shared library

Java library

Decrypt code before executing it

Clear key

Clues available in plain text

Clear data in memory

Asset

Background knowledge

Knowledge on execution environment framework

Tool

Debugger

Profiler

Tracer

Emulator
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Obstacle

Protection

Obfuscation

Control flow flattening

Opaque predicates

Anti debugging

White box cryptography

Execution environment

Limitations from operating system

Tool limitations

Analysis / reverse engineering

String / name analysis

Symbolic execution / SMT solving

Crypto analysis

Pattern matching

Static analysis

Dynamic analysis

Dependency analysis

Data flow analysis

Memory dump

Monitor public interfaces

Debugging

Profiling

Tracing

Statistical analysis

Di↵erential data analysis

Correlation analysis

Black-box analysis

File format analysis

“Aside	from	the	[omissis]	added	inconveniences	
[due	to	protections],	execution	environment	
requirements	can	also	make	an	attacker’s	task	
much	more	difficult.	[omissis]	Things	such	as	
limitations	on	network	access	and	maximum	
file	size	limitations	caused	problems	during	this	
exercise”

[P:F:7]	General	obstacle	to	understanding	[by	
dynamic	analysis]:	execution	environment	
(Android:	limitations	on	network	access	and	
maximum	file	size)
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Obstacle

Protection

Obfuscation

Control flow flattening

Opaque predicates

Anti debugging

White box cryptography

Execution environment

Limitations from operating system

Tool limitations

Analysis / reverse engineering

String / name analysis

Symbolic execution / SMT solving

Crypto analysis

Pattern matching

Static analysis

Dynamic analysis

Dependency analysis

Data flow analysis

Memory dump

Monitor public interfaces

Debugging

Profiling

Tracing

Statistical analysis

Di↵erential data analysis

Correlation analysis

Black-box analysis

File format analysis
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Attack strategy

Attack step

Prepare the environment

Reverse engineer app and protections

Understand the app

Preliminary understanding of the app

Identify input / data format

Recognize anomalous/unexpected behaviour

Identify API calls

Understand persistent storage / file / socket

Understand code logic

Identify sensitive asset

Identify code containing sensitive asset

Identify assets by static meta info

Identify assets by naming scheme

Identify thread/process containing sensitive asset

Identify points of attack

Identify output generation

Identify protection

Run analysis

Reverse engineer the code

Disassemble the code

Deobfuscate the code*

Build the attack strategy

Evaluate and select alternative step / revise attack strategy

Choose path of least resistance

Limit scope of attack

Limit scope of attack by static meta info

Attack step

Prepare attack

Choose/evaluate alternative tool

Customize/extend tool

Port tool to target execution environment

Create new tool for the attack

Customize execution environment

Build a workaround

Recreate protection in the small

Assess e↵ort

Tamper with code and execution

Tamper with execution environment

Run app in emulator

Undo protection

Deobfuscate the code*

Convert code to standard format

Disable anti-debugging

Obtain clear code after code decryption at runtime

Tamper with execution

Replace API functions with reimplementation

Tamper with data

Tamper with code statically

Out of context execution

Brute force attack

Analyze attack result

Make hypothesis

Make hypothesis on protection

Make hypothesis on reasons for attack failure

Confirm hypothesis



How	hackers	understand	
protected	software
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[L:D:24]	prune	search	space	for	
interesting	code	by	studying	IO	behavior,	
in	this	case	system	calls	

[L:D:26]	prune	search	space	for	
interesting	code	by	studying	static	
symbolic	data,	in	this	case	string	
references	in	the	code	



How	hackers	build	attack	strategies
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How	attackers	chose	&	customize	tools
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How	hackers	workaround	
&	defeat	protections
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