
| 1 Sébastien Bardin -- ISSISP 2017

BINARY-LEVEL SECURITY:

SEMANTIC ANALYSIS TO THE RESCUE

Sébastien Bardin (CEA LIST)

Joint work with

Richard Bonichon, Robin David, Adel Djoudi & many other people

| 2 Sébastien Bardin -- ISSISP 2017

ABOUT MY LAB @CEA

| 3

• Binary-level security analysis: many applications, many challenges

• Standard techniques (dynamic, syntactic) not enough

• Formal methods can help … but must be strongly adapted

• [Complement existing methods]

• Need robustness, precision and scalability!

• Acceptable to lose both correctness & completeness – in a controlled way

• New challenges and variations, many things to do!

• A tour on how formal methods can help

• Explore and discover -- with Josselin Feist

• Prove infeasibility or validity -- with Robin David

• Simplify (not covered here) -- with Jonathan Salwan

Sébastien Bardin -- ISSISP 2017

IN A NUTSHELL

| 4 Sébastien Bardin -- ISSISP 2017

OUTLINE

• Why binary-level analysis?

• Some background on source-level formal methods

• The hard journey from source to binary

• A few case-studies

• Conclusion

• Focus mostly on Symbolic Execution

• Give hints for abstract Interpretation

Cover both

• vulnerability detection

• deobfuscation

| 5 Sébastien Bardin -- ISSISP 2017

OUTLINE

• Why binary-level analysis?

• Some background on source-level formal methods

• The hard journey from source to binary

• A few case-studies

• Conclusion

| 6 Sébastien Bardin -- ISSISP 2017

BENEFITS

No source code More precise analysis Malware

What for: vulnerabilities, reverse (malware, legacy),

protection evaluation, etc.

| 7 Sébastien Bardin -- ISSISP 2017

EXAMPLE: COMPILER BUG

Our goal here:

• Check the code after compilation

| 8 Sébastien Bardin -- ISSISP 2017

EXAMPLE: MALWARE COMPREHENSION

The day after: malware comprehension

• understand what has been going on

• mitigate, fix and clean

• improve defense

Highly challenging [obfuscation]

APT: highly sophisticated attacks

• Targeted malware

• Written by experts

• Attack: 0-days

• Defense: stealth, obfuscation

• Sponsored by states or mafia

USA elections: DNC Hack

| 9 Sébastien Bardin -- ISSISP 2017

CHALLENGE: CORRECT DISASSEMBLY

Basic reverse problem

• aka model recovery

• aka CFG recovery

| 10 Sébastien Bardin -- ISSISP 2017

CAN BE TRICKY! • code – data

• dynamic jumps (jmp eax)

| 11 Sébastien Bardin -- ISSISP 2017

STATE-OF-THE-ART TOOLS ARE NOT ENOUGH

• Static (syntactic): too fragile

• Dynamic: too incomplete

Just add

 mov %eax,%ecx

 mov %ecx,%eax

and break results

| 12 Sébastien Bardin -- ISSISP 2017

[See later] CAN BECOME A NIGHTMARE WHEN OBFUSCATED

| 13 Sébastien Bardin -- ISSISP 2017

EXAMPLE: VULNERABILITY DETECTION

Find vulnerabilities before the bad guys

• On the whole program

• At binary-level

• Know only the entry point and program

input format

| 14 Sébastien Bardin -- ISSISP 2017

EXAMPLE: VULNERABILITY DETECTION

| 15 Sébastien Bardin -- ISSISP 2017

CHALLENGE: In-depth exploration (example: use after free)

Dynamic: not enough

• Too incomplete

| 16 Sébastien Bardin -- ISSISP 2017

BONUS: (MULTI-)ARCHITECTURE SUPPORT

| 17 Sébastien Bardin -- ISSISP 2017

THE SITUATION

• Binary-level security analysis is necessary

• Binary-level security analysis is highly challenging (*)

• Standard tools are not enough – experts need better help!

(*) i.e., more challenging

than source code analysis

• Static (syntactic): too fragile

• Dynamic: too incomplete

| 18 Sébastien Bardin -- ISSISP 2017

SOLUTION? BINARY-LEVEL SEMANTIC ANALYSIS

Semantic preserved

by compilation or

obfuscation

Can reason about

sets of executions

| 19 Sébastien Bardin -- ISSISP 2017

OUTLINE

• Why binary-level analysis?

• Some background on source-level formal methods

• The hard journey from source to binary

• A few case-studies

• Conclusion

| 20

Sébastien Bardin -- ISSISP 2017

BACK IN TIME: THE SOFTWARE CRISIS (1969)

| 21 Sébastien Bardin -- ISSISP 2017

ABOUT FORMAL METHODS

Success in safety-critical

| 22 Sébastien Bardin -- ISSISP 2017

A DREAM COME TRUE … IN CERTAIN DOMAINS

| 23 Sébastien Bardin -- ISSISP 2017

A DREAM COME TRUE … IN CERTAIN DOMAINS (2)

| 24

Semantics

• Precise meaning for the domain of evaluation and the effect of instructions

• Operational semantics = « interpreter »

Properties

• From Invariants / reachability to safety/liveness/hyper-properties/…

• On software: mostly invariants and reachability

Algorithms:

• Historically: Weakest precondition, Abstract interpretation, model checking

• Correctness: the analysis explores only behaviors of interest

• Completeness: the analysis explores at least all behaviors of interest

Sébastien Bardin -- ISSISP 2017

OVERVIEW OF FORMAL METHODS

| 25

Trends:

• Frontier between techniques disappear

• master abstraction (correct xor complete)

• reduction to logic

• sweet spots

Next:

• AI: complete (can prove invariants) -- 1977

• DSE: correct (can find bugs) -- 2005

Sébastien Bardin -- ISSISP 2017

OVERVIEW OF FORMAL METHODS

• Representative

• Industrial successes at

source-level

• Adaptation to binary:

very different situations

| 26

Sébastien Bardin -- ISSISP 2017

ABSTRACT INTERPRETATION

| 27

Sébastien Bardin -- ISSISP 2017

ABSTRACT INTERPRETATION IN PRACTICE

skip

| 28

Key points:

• Infinite data: abstract domain

• Path explosion: merge

• Loops: widening

In practice:

• Tradeoff between cost and precision

• Tradeoff between generic & dedicated domains

It is sometimes simple and useful

• taint, pointer nullness, typing

Big successes: Astrée, Frama-C, Clousot

Sébastien Bardin -- ISSISP 2017

ABSTRACT INTERPRETATION IN PRACTICE

| 29 Sébastien Bardin -- ISSISP 2017

DYNAMIC SYMBOLIC EXECUTION

 (DSE, Godefroid 2005)

Perfect for intensive testing

• Correct, relatively complete

• No false alarm

• Robust

• Scale in some ways

// incomplete

| 30 Sébastien Bardin -- ISSISP 2017

DSE: PATH PREDICATE COMPUTATION

 (DSE, Godefroid 2005)

| 31 Sébastien Bardin -- ISSISP 2017

DSE: GLOBAL PROCEDURE

 (DSE, Godefroid 2005)

| 32 Sébastien Bardin -- ISSISP 2017

ABOUT ROBUSTNESS (imo, the major advantage)

« concretization »
• Keep going when symbolic

reasoning fails

• Tune the tradeoff genericity

- cost

| 33

Three key ingredients

• Path predicate & solving

• Path enumeration

• C/S policy

Limits

• #paths -> better heuristics (?), state merging, distributed search,

 path pruning, adaptation to coverage objectives, etc.

• solving cost -> preprocessing, caching, incremental solving,

 aggressive concretization (good?)

 [wait for better solvers]

• Preconditions/postconditions/advanced stubs

Sébastien Bardin -- ISSISP 2017

DSE

| 34

Sébastien Bardin -- ISSISP 2017

DSE: PATH PREDICATE MAY BE COMPLICATED

| 35

Sébastien Bardin -- ISSISP 2017

DSE: SEARCH

• Search heurstics matters
• But no good choice (hint: DFS is often the worst)

• The engine must provide flexibility

| 36

Sébastien Bardin -- ISSISP 2017

DSE: SEARCH (2)

Generic engine
• Score each active prefix

• Pick the best & expand

• Easy encoding of many

heuristics

| 37 Sébastien Bardin -- ISSISP 2017

C/S POLICIES

| 38 Sébastien Bardin -- ISSISP 2017

C/S POLICIES (2)

• C/S policy matters
• But no good choice

• The engine must provide flexibility

| 39

Sébastien Bardin -- ISSISP 2017

C/S POLICIES (3)

Generic engine
• C/S specification

• DSE parametrized by C/S

| 40 Sébastien Bardin -- ISSISP 2017

OUTLINE

• Why binary-level analysis?

• Some background on source-level formal methods

• The hard journey from source to binary

• A few case-studies

• Conclusion

| 41 Sébastien Bardin -- ISSISP 2017

NOW: BINARY-LEVEL SECURITY

| 42 Sébastien Bardin -- ISSISP 2017

THE HARD JOURNEY FROM SOURCE TO BINARY

Wanted

• robustness

• precision

• scale

| 43

DSE is quite easy to adapt

• thx to SMT solvers (arrays+bitvectors)

• thx to concretization

• yet, performance degrades

AI is much more complicated

• Even for « normal » code

• btw, cannot expect better than

 source-level precision

Sébastien Bardin -- ISSISP 2017

ADAPTING DSE and AI to BINARY: two very different stories

Problems

• Low-level control: jump eax

• Low-level data: memory

• Low-level data: flags

Problem solved: multi-architecture

• rely on some IR

| 44 Sébastien Bardin -- ISSISP 2017

FULL DISCLOSURE: the BINSEC tool

Still very young!

Semantic analysis for binary-level security

• Help make sense of binary

• more robust than syntactic

• more exhaustive than dynamic

Some features

• Help to recover a simple model

• Identify feasible events (+ input)

• Identify infeasible events (eg, protections)

• Multi-architecture

| 45 Sébastien Bardin -- ISSISP 2017

UNDER THE HOOD

| 46 Sébastien Bardin -- ISSISP 2017

INTERMEDIATE REPRESENTATION

• Concise

• Well-defined

• Clear, side-effect free

| 47 Sébastien Bardin -- ISSISP 2017

INTERMEDIATE REPRESENTATION +

simplifications

• IR level

• machine-instruction level

• program level

| 48 Sébastien Bardin -- ISSISP 2017

BINARY-LEVEL DSE (Godefroid)

For deobfuscation
• find new real paths

• robust

• still incomplete

« dynamic analysis on steroids »

| 49 Sébastien Bardin -- ISSISP 2017

DSE COMPLEMENTS DYNAMIC ANALYSIS

| 50 Sébastien Bardin -- ISSISP 2017

IN PRACTICE

Can recover useful semantic information

• More precise disassembly

• Exact semantic of instructions

• Input of interest

• …

| 51 Sébastien Bardin -- ISSISP 2017

ABSTRACT INTERPRETATION IS VERY VERY HARD

ON BINARY CODE

Problems

• Jump eax

• memory

• Bit resoning

| 52 Sébastien Bardin -- ISSISP 2017

ISSUE: GLOBAL MEMORY Problems

• Jump eax

• memory

• Bit resoning

| 53 Sébastien Bardin -- ISSISP 2017

ISSUE: LACK of HIGH-LEVEL STRUCTURE

High-level conditions translated into low-level flag predicates

Condition on flags, not on register (nor stack)

Problems

• Jump eax

• memory

• Bit resoning

| 54 Sébastien Bardin -- ISSISP 2017

LOW-LEVEL CONDITIONS

| 55 Sébastien Bardin -- ISSISP 2017

LOW-LEVEL CONDITIONS

| 56 Sébastien Bardin -- ISSISP 2017

SOLUTIONS?

Precision refinement [Brauer, 2011] Degraded mode [Kinder, 2012]

| 57 Sébastien Bardin -- ISSISP 2017

SOLUTIONS? (2)

| 58 Sébastien Bardin -- ISSISP 2017

HIGH-LEVEL CONDITION RECOVERY

| 59 Sébastien Bardin -- ISSISP 2017

STATIC ANALYSIS in BINSEC

 an overview

| 60 Sébastien Bardin -- ISSISP 2017

OVERVIEW

Correct Complete Efficient Robust

Static syntactic X X / -- OK X

Dynamic OK XX OK OK

DSE OK -- X OK

Static semantic X OK / X X X

| 61 Sébastien Bardin -- ISSISP 2017

OUTLINE

• Why binary-level analysis?

• Some background on source-level formal methods

• The hard journey from source to binary

• A few case-studies

• Conclusion

| 62 Sébastien Bardin -- ISSISP 2017

APPLICATION: VULNERABILITY DETECTION

Find vulnerabilities before the bad guys

• On the whole program

• At binary-level

• Know only the entry point and program

input format

| 63 Sébastien Bardin -- ISSISP 2017

APPLICATION: VULNERABILITY DETECTION

Many successful applications of pure DSE

• SAGE @ Microsoft

• Mayhem/VeriT @ ForallSecure

cf. Cyber Grand Challenge

| 64 Sébastien Bardin -- ISSISP 2017

APPLICATION: VULNERABILITY DETECTION

 [SSPREW 2016, with VERIMAG]

Here:

• Focus on use-after-free

• Combine static and DSE

| 65 Sébastien Bardin -- ISSISP 2017

KEY IDEAS (Josselin Feist)

A Pragmatic 2-step approach

• Static: scale, not complete, not correct

• Symbolic: correct, directed by static

• Combination: scalable and correct

| 66 Sébastien Bardin -- ISSISP 2017

EXPERIMENTAL EVALUATION

On these examples:

• Better than DSE alone

• Better than blackbox fuzzing

• Better than greybox fuzzing with no seed

| 67 Sébastien Bardin -- ISSISP 2017

APPLICATION: MALWARE DEOBFUSCATION

[S&P 2017, with LORIA]

The day after: malware comprehension

• understand what has been going on

• mitigate, fix and clean

• improve defense

Goal: help malware comprehension

• Reverse of heavily obfuscated code

• Identify and simplify protections

APT: highly sophisticated attacks

• Targeted malware

• Written by experts

• Attack: 0-days

• Defense: stealth, obfuscation

• Sponsored by states or mafia

USA elections: DNC Hack

| 68 Sébastien Bardin -- ISSISP 2017

REVERSE CAN BECOME A NIGHTMARE (OBFUSCATION)

Obfuscation: make a code

hard to reverse
• self-modification

• encryption

• virtualization

• code overlapping

• opaque predicates

• callstack tampering

• …

Goal: help malware comprehension

• Identify and simplify protections

• Ideal = revert protections

| 69 Sébastien Bardin -- ISSISP 2017

EXAMPLE: OPAQUE PREDICATE

Constant-value predicates

 (always true, always false)

• dead branch points to spurious code

• goal = waste reverser time & efforts

| 70 Sébastien Bardin -- ISSISP 2017

EXAMPLE: STACK TAMPERING

Alter the standard compilation scheme:

 ret do not go back to call

• hide the real target

• return site may be spurious code

| 71 Sébastien Bardin -- ISSISP 2017

STANDARD DISASSEMBLY TECHNIQUES ARE NOT ENOUGH

Static analysis

• too fragile vs obfuscation

• junk instr, missed instr.

Dynamic analysis

• robust vs obfuscation

• too incomplete

| 72 Sébastien Bardin -- ISSISP 2017

DYNAMIC SYMBOLIC EXECUTION CAN HELP (Debray, Kruegel, …)

For deobfuscation
• find new real paths

• robust

• still incomplete

« dynamic analysis on steroids »

| 73 Sébastien Bardin -- ISSISP 2017

YET … WHAT ABOUT INFEASIBILITY QUESTIONS?

Prove that something is

always true (resp. false)

Many such issues in reverse

• is a branch dead?

• does the ret always return to the call?

• have i found all targets of a dynamic jump?

And more

• does this malicious ret always go there?

• does this expression always evaluate to 15?

• does this self-modification always write this opcode?

• does this self-modification always rewrite this instr.?

• …

Not addressed by DSE
• Cannot enumerate all paths

| 74 Sébastien Bardin -- ISSISP 2017

OUR PROPOSAL: BACKWARD-BOUNDED SYMBOLIC EXECUTION

Insight 1: symbolic reasoning

• precision

• But: need finite #paths

Insight 2: backward-bounded

• pre_k(c)=0 => c is infeasible

• finite #paths

• efficient, depends on k

• But: backward on jump eax?

Insight 3: dynamic partial CFG

• solve (partially) dyn. jumps

• robustness

False negative (FN)

• can miss infeasibility

• why: k too small (miss /\-constraints)

False positive (FP)

• wrongly assert infeasibility

• why: CFG too partial (miss \/-constraints)

Low FP/FN rates in practice

• ground truth xp

| 75 Sébastien Bardin -- ISSISP 2017

FORWARD & BACKWARD SYMBOLIC EXECUTION

| 76 Sébastien Bardin -- ISSISP 2017

EXPERIMENTAL EVALUATION

• Controlled experiments (ground truth) precision

• Large-scale experiment: packers scalability, robustness

• Case-study: X-tunnel malware usefulness

| 77 Sébastien Bardin -- ISSISP 2017

CONTROLLED EXPERIMENTS

• Goal = assess the precision of the technique

• ground truth value

• Experiment 1: opaque predicates (o-llvm)

• 100 core utils, 5x20 obfuscated codes

• k=16: 3.46% error, no false negative

• robust to k

• efficient: 0.02s / query

• Experiment 2: stack tampering (tigress)

• 5 obfuscated codes, 5 core utils

• almost all genuine ret are proved (no false positive)

• many malicious ret are proved « single-targets »

• Very precise résults

• Seems efficient

| 78 Sébastien Bardin -- ISSISP 2017

CASE-STUDY: PACKERS

Packers: legitimate software protection tools

 (basic malware: the sole protection)

| 79 Sébastien Bardin -- ISSISP 2017

CASE-STUDY: PACKERS (fun facts)

| 80 Sébastien Bardin -- ISSISP 2017

CASE-STUDY: THE XTUNNEL MALWARE (part of DNC hack)

Two heavily obfuscated samples
• Many opaque predicates

Goal: detect & remove protections
• Identify 50% of code as spurious

• Fully automatic, < 3h

| 81 Sébastien Bardin -- ISSISP 2017

CASE-STUDY: THE XTUNNEL MALWARE (fun facts)

• Protection seems to rely only on opaque predicates

• Only two families of opaque predicates

• Yet, quite sophisticated

• original OPs

• interleaving between payload and OP computation

• sharing among OP computations

• possibly long dependencies chains (avg 8.7, upto 230)

| 82 Sébastien Bardin -- ISSISP 2017

SECURITY ANALYSIS: COUNTER-MEASURES (and mitigations)

• Long dependecy chains (evading the bound k)

• Not always requires the whole chain to conclude!

• Can use a more flexible notion of bound (data-dependencies, formula size)

• Hard-to-solve predicates (causing timeouts)
• A time-out is already a valuable information

• Opportunity to find infeasible patterns (then matching), or signatures

• Tradeoff between performance penalty vs protection focus

• Note: must be input-dependent, otherwise removed by standard DSE optimizations

• Anti-dynamic tricks (fool initial dynamic recovery)

• Can use the appropriate mitigations

• Note: some tricks can be circumvent by symbolic reasoning

Current state-of-the-art

• push the cat-and-mouse game further

• raise the bar for malware designers

Also

• « Probabilistic obfuscation »

• Covert channels

| 83 Sébastien Bardin -- ISSISP 2017

OUTLINE

• Why binary-level analysis?

• Some background on source-level formal methods

• The hard journey from source to binary

• A few case-studies

• Conclusion

| 84 Sébastien Bardin -- ISSISP 2017

SUMMARY

Feasibility Infeasibility Efficient Robust

Static syntactic X X OK X

Dynamic -- X OK OK

DSE OK X X OK

Static semantic X OK X X

BB-DSE X OK (fp,fn) OK OK

| 85 Sébastien Bardin -- ISSISP 2017

CONCLUSION

• Semantic analysis can change the game of binary-level security

• Current syntactic and dynamic methods are not enough

• [complement existing approaches and help the expert, not replace everything]

• Explore more, Prove invariance, Simplify

• Yet, challenging to adapt from source-level safety-critical

• Need robustness, precision and scale!!

• « Correct-enough » and « Complete-enough » are enough (room for better definition!)

• DSE much easier to adapt than AI

• New challenges and variations, so much to do

| 86 Sébastien Bardin -- ISSISP 2017

FUTURE DIRECTION

Commissariat à l’énergie atomique et aux énergies alternatives

Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142

91191 Gif-sur-Yvette Cedex - FRANCE

www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

