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An intelligence agency chartered with tracking, inves4ga4ng, and 

apprehending botnet operators asked us to use Cythereal AMAG-

ES to determine whether the actors behind certain botnets were 

connected. The connec4ons had to be based on strong forensic 

evidence that could stand scru4ny in the court of law.!

The agency provided us with a collec4on of 2,409 unique bot bi-

naries harvested from infected systems, the IP of the machines 

they were found, the IP of their command and control servers, 

and the names of the botnet.!

Cythereal AMAGES successfully unpacked 2,375 bots, pro-

ducing 2,205 unique unpacked files. Thus, many different 

bots produced the same unpacked file, indica4ng that 

those bots were not really different.  !

For instance, Cythereal AMAGES found that two bots"

with different sha1 hashes"that were found to communi-

cate with seven different C&C servers produced exactly 

the same unpacked file..!

Deeper analysis by Cythereal AMAGES using mal-

ware DNA revealed clusters of similarity between 

the 4,614 files, both original and unpacked  !

Cythereal AMAGES found that four Darkcomet 

bots were similar to six Ponyloader bots, two Al-

dibot bots, and one Smokeloader.  As evidence 

Cythereal AMAGES furnished the specific code in 

each bot associated to the matching DNA. !

Cythereal AMAGES demonstrated the ability to 

help inves4gators literally find needle in the mega-

bytes of haystack, along with forensically sound 

evidence to support the case.!

Case Study: Use of Cythereal AMAGES to Connect Disparate Botnets!

Table 1. Binaries before and a1er unpacking.!

Figure 1. Two bots (circles) that connect to seven C&C  serv-

ers  (rectangle with circle) yield the same unpacked file.   !

Figure 2.  ConnecEons between bots discovered using mal-

ware DNA provide evidence of code sharing between botnets.!
For further informa.on, contact info@cythereal.com!

Descrip(on! #! %!
Original bot binaries! 2,409! !
Unpacked successfully! 2,375! 98.6%!
Unique unpacked files! 2,205! 92.8%!

Reduc&on! 170! 7.2%!

&
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Patrick Cousot
Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 1 — ľ P. Cousot, 2005

What is static analysis
by abstract interpretation?

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 2 — ľ P. Cousot, 2005

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Programming (coding)
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Security through obscurity ?
KERCKHOFF’S PRINCIPLE 

Crypto systems should be secure even if 
everything about the system is public 
knowledge – except for the key.

CLAUDE SHANNON 

Modern mathematical rigor

1883 1948

A Crypto-like Foundation of Obfuscation
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What is an Obfuscator?

Definition: Virtual Black-Box Security
[Barak et al., 2001]

• An obfuscator O is an efficient compiler that on 
input P outputs O(P), such that:

– Functionality:
• For every P, O(P) computes the same function as P
• Program O(P) is slightly slower (and larger) than P

– Virtual Black-Box: 
• Whatever Adv can compute with obfuscated code O(P)

• A `black-box Adv` BB can compute by only calling P 

Adv(P) ≈ BBAdv(O(P)) P

P(x)

x

An obfuscator is an algorithm O such that for any 
program P, O(P) is a program such that:

• O(P) has the same functionality as P 
• O(P) is hard to analyse / “reverse-engineer”.
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Provable
Security

Yury Lifshits

Idea of
Provable
Security
Ways to Achieve
Security

Basic
Results
Impossibility of
obfuscation
Property Hiding
Encrypted
computation

Overview of
Further
Research
Mobile
cryptography
Black-box Security
Practical Approach

Summary

Ana and BAna

Slide from Lecture 1 — your turn to explain.

We are interested in 2 types of polynomial-time analyzers:

➯ Ana is a source-code analyzer that can read the
program.

Ana(P)

➯ BAna is a black-box analyzer that only queries the
program as an oracle.

BAnaP(time(P))

Black-Box security
Ana can’t get more information than BAna could

The model

VBB
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“Anything that can be 
learned from the 
obfuscated form, 
could have been 
learned by merely 
observing the 
program’s input-output 
behavior (i.e., by 
treating the program 
as a black-box)’’
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as a black-box)’’

 |O(P)| ≤ poly(|P|) for some polynomial poly( )
O is efficient if it runs in polynomial time
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|Pr[A(O(M)) = 1]� Pr[SM (1|M |) = 1]|  "(|M |)
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Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 1 — ľ P. Cousot, 2005

What is static analysis
by abstract interpretation?

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 2 — ľ P. Cousot, 2005

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

“Anything that can be 
learned from the 
obfuscated form, 
could have been 
learned by merely 
observing the 
program’s input-output 
behavior (i.e., by 
treating the program 
as a black-box)’’

Obfuscation
Virtual Black-Box

|Pr[A(O(M)) = 1]� Pr[SM (1|M |) = 1]|  "(|M |)
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Is this possible?
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Probabilistic Polynomial-Time TM
• New kind of NTM, in which each nondeterministic step is a 

coin flip:  has exactly 2 next moves, to each of which we 
assign probability ½.

• Example:

1/4 1/4

1/8 1/8 1/8

1/16 1/16

Computation on input w– To each maximal branch, we assign 
a probability:

½ u ½ u … u ½

• Has accept and reject states, as 
for NTMs.

• Now we can talk about probability 
of acceptance or rejection, on 
input w.

number of coin flips
on the branch

Probabilistic Polynomial Time TM
PPT-TM
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Probabilistic Poly-Time TMs

1/4 1/4

1/8 1/8 1/8

1/16 1/16

Computation on input w
• Probability of acceptance =

6b an accepting branch Pr(b)
• Probability of rejection =

6b a rejecting branch Pr(b)
• Example:  

– Add accept/reject information
– Probability of acceptance = 1/16 + 1/8 

+ 1/4 + 1/8 + 1/4 = 13/16
– Probability of rejection = 1/16 + 1/8 = 

3/16

• We consider TMs that halt (either 
accept or reject) on every branch--
-deciders.

• So the two probabilities total 1.

Acc Acc

Acc Acc Rej

Acc Rej

Probabilistic Polynomial Time TM
PPT-TM
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One-way FunctionsOne-way functions

A one-way function is a function that is easy to compute but
computationally hard to reverse

• Easy to calculate f (x) from x

• Hard to invert: to calculate x from f (x)

There is no proof that one-way functions exist, or even real evidence
that they can be constructed

Even so, there are examples that seem one-way: they are easy to
compute but we know of no easy way to reverse them, for example

x

2 is easy to compute mod n = pq but x1/2 is not

18 Goldwasser and Bellare

time”. A “strong negation” of the notion of a negligible fraction/probability is the notion of a non-negligible
fraction/probability. we say that a function ∫ is non-negligible if there exists a polynomial p such that for all
su±ciently large k’s it holds that ∫(k) > 1

p(k)

. Note that functions may be neither negligible nor non-negligible.

Definition 2.2 A function f : {0, 1}§ ! {0, 1}§ is one-way if:

(1) there exists a PPT that on input x output f(x);

(2) For every PPT algorithm A there is a negligible function ∫A such that for su±ciently large k,

Pr
h

f(z) = y : x
$√ {0, 1}k ; y √ f(x) ; z √ A(1k, y)

i
∑ ∫A(k)

Remark 2.3 The guarantee is probabilistic. The adversary is not unable to invert the function, but has a low
probability of doing so where the probability distribution is taken over the input x to the one-way function
where x if of length k, and the possible coin tosses of the adversary. Namely, x is chosen at random and y is
set to f(x).

Remark 2.4 The advsersary is not asked to find x; that would be pretty near impossible. It is asked to find
some inverse of y. Naturally, if the function is 1-1 then the only inverse is x.

Remark 2.5 Note that the adversary algorithm takes as input f(x) and the security parameter 1k (expressed
in unary notatin) which corresponds to the binary length of x. This represents the fact the adversary can work
in time polynomial in |x|, even if f(x) happends to be much shorter. This rules out the possibility that a
function is considered one-way merely because the inverting algorithm does not have enough time to print the
output. Consider for example the function defined as f(x) = y where y is the log k least significant bits of x
where |x| = k. Since the |f(x)| = log |x| no algorithm can invert f in time polynomial in |f(x)|, yet there exists
an obvious algorithm which finds an inverse of f(x) in time polynomial in |x|. Note that in the special case of
length preserving functions f (i.e., |f(x)| = |x| for all x’s), the auxiliary input is redundant.

Remark 2.6 By this definition it trivially follows that the size of the output of f is bounded by a polynomial
in k, since f(x) is a poly-time computable.

Remark 2.7 The definition which is typical to definitions from computational complexity theory, works with
asymptotic complexity—what happens as the size of the problem becomes large. Security is only asked to hold
for large enough input lengths, namely as k goes to infinity. Per this definition, it may be entirely feasible
to invert f on, say, 512 bit inputs. Thus such definitions are less directly relevant to practice, but useful for
studying things on a basic level. To apply this definition to practice in cryptography we must typically envisage
not a single one-way function but a family of them, parameterized by a security parameter k. That is, for each
value of the security parameter k there is be a specific function f : {0, 1}k ! {0, 1}§. Or, there may be a family
of functions (or cryptosystems) for each value of k. We shall define such familes in subsequent section.

The next two sections discuss variants of the strong one-way function definition. The first time reader is
encouraged to directly go to Section 2.2.4.

2.2.2 Weak One-Way Functions

One way functions come in two flavors: strong and weak. The definition we gave above, refers to a strong way
function. We could weaken it by replacing the second requirement in the definition of the function by a weaker
requirement as follows.

Definition 2.8 A function f : {0, 1}§ ! {0, 1}§ is weak one-way if:

Definition
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Point function: 


One-way functions f obfuscate 


Let y = f(x) then Obf-I_x obfuscates 

Program Obf-I_x(w): {if y=f(w) then 1 else 0}

Idea: y = f(x) reveals no more than VBB access to 

Obfuscating Point Functions
Example: Obfuscating a Point Function 
[Canetti97]

• Point function Ix(w)={1 if w=x , 0 otherwise}
• Obfuscate Ix with perfectly one-way function f 

Let y=f(x)
Program ObfIx (w):

{ if y=f(w) return 1 else return 0 }

• Intuitively: y=f(x) reveals no more info than 
black-box access to Ix

Adv(P) ≈ BBAdv(ObfIx) f
f(x)

x

Adv(P) ≈Adv(f(x))

Example: Obfuscating a Point Function 
[Canetti97]

• Point function Ix(w)={1 if w=x , 0 otherwise}
• Obfuscate Ix with perfectly one-way function f 

Let y=f(x)
Program ObfIx (w):

{ if y=f(w) return 1 else return 0 }

• Intuitively: y=f(x) reveals no more info than 
black-box access to Ix

Adv(P) ≈ BBAdv(ObfIx) f
f(x)

x

Adv(P) ≈Adv(f(x))

I

x

(w) =

⇢
1 if w = x

0 otherwise

I
x

I
x

I
x
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Is it possible for all programs?
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Obfuscation for arbitrary TM
Impossible!

• Functionality 
• Polynomial Slowdown 
• Virtual Black-Box

There exists an attacker A 
and a program P for which NO 
VBB obfuscation O does work!

Barak et al. JACM 2012
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C↵,�(x) =

⇢
� if x = ↵

0 otherwise

Zk(x) = 0k

Distinguish if X computes Cα, β 
from Cα’,β’ for any

(α, β)≠(α’,β’)
is NON COMPUTABLE!

Idea: It is difficult distinguish (Cα, β , Dα, β) from 
(Zk , Dα, β) by VBB access to these programs!!

Simply compute X(α) for 
Poly(k) steps and check!

Lemma:  Proof for 2TMs (C & D)

↵,� 2 {0, 1}k Secrets!!

D↵,�(X) =

⇢
1 if X ⌘ C↵,�

0 otherwise
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The Functionality  
preserves behaviour 

D↵,�

C↵,�

Idea: Proof for 2TMs (C,D)

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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The Functionality  
preserves behaviour 

D↵,�

C↵,�

1

Idea: Proof for 2TMs (C,D)

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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The Functionality  
preserves behaviour  
even if obfuscated

O(C↵,�)

O(D↵,�)

Idea: Proof for 2TMs (C,D)

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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The Functionality  
preserves behaviour  
even if obfuscated

O(C↵,�)

O(D↵,�)

Idea: Proof for 2TMs (C,D)
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The Functionality  
preserves behaviour  
even if obfuscated

1

O(C↵,�)

O(D↵,�)

Idea: Proof for 2TMs (C,D)

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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The Functionality  
preserves behaviour  
even if obfuscated

1

O(C↵,�)

O(D↵,�)

Idea: Proof for 2TMs (C,D)

1

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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1

Black-Box Simulator

D↵,�

C↵,�

Idea: Proof for 2TMs (C,D)

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)

Virtual Black-Box 
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1

Black-Box Simulator

D↵,�

0

Zk

Idea: Proof for 2TMs (C,D)

Virtual Black-Box 

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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1

Black-Box Simulator

D↵,�

0

Zk

Idea: Proof for 2TMs (C,D)

Virtual Black-Box 0

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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1

Black-Box Simulator

D↵,�

0

Zk

Idea: Proof for 2TMs (C,D)

Virtual Black-Box 0

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)
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How about ONE generic program?
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Virtualisation  
i.e., Interpreters & specialisers
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Interpretation150 16. CALCOLABILITÀ E LINGUAGGI DI PROGRAMMAZIONE

macchina Mx sul dato y:

U(x, y) =

8
<

:
'x(y) se 'x(y) #

" altrimenti

Traslando questo ragionamento sui linguaggi di programmazione, si ottiene il
concetto di interprete. Siano L ed S due linguaggi di programmazione Turing-
completi; assumiamo che operino sul medesimo insieme di dati D.

Definizione 16.15. Un programma int 2 L tale che, per ogni S-programma
P e per ogni dato d 2 D:

[[int]]L(P, d) = [[P]]S(d)

è un interprete in L di S-programmi (o semplicemente di S).

Ovviamente, se [[P]]S(d) ", allora anche [[int]]L(P, d) ".

L’esistenza di un interprete è assicurata dalla Turing-completezza dei linguaggi
in oggetto. In altri termini in L si deve simulare l’esecuzione del S-programma
P sull’input d istruzione per istruzione. Per far ciò ci si baserà sulla semantica
(formalmente definita) del programma P nel linguaggio S. Un interprete in L per
L programmi è detto metainterprete del linguaggio L.

Vedremo nel dettaglio come realizzare un metainterprete del linguaggio While.
Per altri linguaggi Turing-completi, il lavoro da fare sarà analogo. Innanzitutto
è necessario rappresentare in DA i programmi While. A tal fine definiamo un
insieme finito di atomi:

A = {‘‘ := 00, ‘‘var 00, ‘‘while 00, ‘‘cons 00, ‘‘tl 00, ‘‘hd 00, ‘‘nil 00, ‘‘; 00 , ‘‘quote 00}

In DA possiamo codificare i numeri naturali, mediante sintassi concreta:

n = (nil.(nil. · · · (nil.| {z }
n

nil) · · · ))

Assumendo che l’insieme delle variabili Var = {v0, v1, v2, . . . }, useremo la seguente
codifica per codificare un insieme infinito di variabili: la variabile vi è codificata da
(var.i). Useremo poi una parola chiave per ogni costrutto, espressione o comando,
previsto nella sintassi di While. Useremo quote per dire che l’espressione (un
albero d privo di variabili) non necessita di essere ulteriormente codificata. La
seguente funzione : While �! DA di traduzione da programmi While ad alberi
DA, è definita induttivamente sulla sintassi in tabella 3.

Se vi sono più variabili di ingresso/uscita si userà una lista del tipo: ((var.1).((var.2). · · · (var.n)) · · · ).
Se P è un programma While, allora P 2 DA è detta sintassi concreta di P. Ad
esempio, la sintassi concreta del programma nell’Esempio 16.3, assumendo x come

the Universal Turing Machine

Code

Data the function computed by x

otherwise
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8
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Traslando questo ragionamento sui linguaggi di programmazione, si ottiene il
concetto di interprete. Siano L ed S due linguaggi di programmazione Turing-
completi; assumiamo che operino sul medesimo insieme di dati D.

Definizione 16.15. Un programma int 2 L tale che, per ogni S-programma
P e per ogni dato d 2 D:

[[int]]L(P, d) = [[P]]S(d)

è un interprete in L di S-programmi (o semplicemente di S).

Ovviamente, se [[P]]S(d) ", allora anche [[int]]L(P, d) ".

L’esistenza di un interprete è assicurata dalla Turing-completezza dei linguaggi
in oggetto. In altri termini in L si deve simulare l’esecuzione del S-programma
P sull’input d istruzione per istruzione. Per far ciò ci si baserà sulla semantica
(formalmente definita) del programma P nel linguaggio S. Un interprete in L per
L programmi è detto metainterprete del linguaggio L.

Vedremo nel dettaglio come realizzare un metainterprete del linguaggio While.
Per altri linguaggi Turing-completi, il lavoro da fare sarà analogo. Innanzitutto
è necessario rappresentare in DA i programmi While. A tal fine definiamo un
insieme finito di atomi:

A = {‘‘ := 00, ‘‘var 00, ‘‘while 00, ‘‘cons 00, ‘‘tl 00, ‘‘hd 00, ‘‘nil 00, ‘‘; 00 , ‘‘quote 00}

In DA possiamo codificare i numeri naturali, mediante sintassi concreta:

n = (nil.(nil. · · · (nil.| {z }
n

nil) · · · ))

Assumendo che l’insieme delle variabili Var = {v0, v1, v2, . . . }, useremo la seguente
codifica per codificare un insieme infinito di variabili: la variabile vi è codificata da
(var.i). Useremo poi una parola chiave per ogni costrutto, espressione o comando,
previsto nella sintassi di While. Useremo quote per dire che l’espressione (un
albero d privo di variabili) non necessita di essere ulteriormente codificata. La
seguente funzione : While �! DA di traduzione da programmi While ad alberi
DA, è definita induttivamente sulla sintassi in tabella 3.

Se vi sono più variabili di ingresso/uscita si userà una lista del tipo: ((var.1).((var.2). · · · (var.n)) · · · ).
Se P è un programma While, allora P 2 DA è detta sintassi concreta di P. Ad
esempio, la sintassi concreta del programma nell’Esempio 16.3, assumendo x come

∈ Code

…is the interpreter!!

if
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Interpretation

Trace Semantics

A trace semantics records the sequence of states encoun-
tered during a partial or complete execution, maybe to-
gether with the action performed to move from one state
to another.

1:
X:=?;

2:
while (X<>0) do

3:
X:=X-1

4:
od

5:

Example of partial trace (labelled
with actions):

1:
X

˙
X:=?
`̀ !̀2:

X

5
X<>0
`̀ !̀3:

X

5
X:=X-1
`̀ !̀4:

X

4

Does not necessarily starts from en-
try states

Course 16.399: “Abstract interpretation”, Tuesday March 10th, 2005 — 9 — ľ P. Cousot, 2005

1:
X:=?;

2:
while (X>0) do

3:
X:=X-1

4:
od

5:

Example of finite maximal trace (la-
belled with actions):

1:
X

˙
X:=?
`̀ `̀ !2:

X

2
X<>0
`̀ `̀ !3:

X

2
X:=X-1
`̀ `̀ !. . .

4:
X

1
X<>0
`̀ `̀ !3:

X

1
X:=X-1
`̀ `̀ !4:

X

0
:(X<>0)
`̀ `̀ !5:

X

0

“Maximal” since does terminate with
a final state (here defined as with-
out any possible successor state

F
def
= fs 2 ˚ j 8s0 2 ˚ : : fi (s; s0)g)

Does not necessarily starts from entry
states

Course 16.399: “Abstract interpretation”, Tuesday March 10th, 2005 — 10 — ľ P. Cousot, 2005

1:
X:=?;

2:
while (X>0) do

3:
X:=X-1

4:
od

5:

Example of infinite (maximal) 2 trace
(labelled with actions):

1:
X

˙
X:=?
`̀ `̀ !2:

X

-1
X<>0
`̀ `̀ !3:

X

-1
X:=X-1
`̀ `̀ !. . .

4:
X

-2
X<>0
`̀ `̀ !3:

X

-2
X:=X-1
`̀ `̀ !4:

X

-3
X<>0
`̀ `̀ !. . .

3:
X

-3
X:=X-1
`̀ `̀ !4:

X

-4
X<>0
`̀ `̀ !. . . . . .

Does not necessarily starts from entry
states

2 Here infinite is maximal although it is mathematically conceivable to have transfinite traces.
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The Partial Trace Semantics

Given a transition system h˚; fi i, the corresponding par-
tial trace semantics is

fff 2 ˚~n j n > 0 ^ 8i 2 [0; n` 2] : fi (ffi;ffi+1)g

Another common case is that of prefix traces starting
from given initial states I 2 }(˚):

fff 2 ˚~n j n > 0 ^ ff0 2 I ^ 8i 2 [0; n` 2] : fi (ffi;ffi+1)g

Course 16.399: “Abstract interpretation”, Tuesday March 10th, 2005 — 12 — ľ P. Cousot, 2005

Trace Semantics

A trace semantics records the sequence of states encoun-
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E [[x]]� = �(x) E [[d]]� = d

E [[cons(E1, E2)]]� = (E [[E1]]�.E [[E2]]�) E [[E1 = E2]]� = (E [[E1]]� = E [[E2]]�)

E [[tl(E)]]� =

8
<

:
c se E [[E]]� = (t.c)

nil altrimenti
E [[hd(E)]]� =

8
<

:
t se E [[E]]� = (t.c)

nil altrimenti

Table 1. Semantica delle espressioni

una relazione �!✓ (Com ⇥ State) ⇥ (Com ⇥ State) che rappresenta
il generico passo di calcolo. Nel seguito, se il comando è vuoto (stringa
vuota "), allora la configurazione corrispondente h",�i è rappresentata
semplicemente come �.

E[[E]]�=d
hx:=E,�i�!�[d/x] hskip,�i�!�

hC
1

,�i�!� 0

hC
1

;C
2

,�i�!hC
2

,� 0i

E[[E]]�=nil

hwhile E do C endw,�i�!�

E[[E]]�6=nil

hwhile E do C endw,�i�!hC;while E do C endw,�i

Table 2. Semantica dei comandi

Semantica dei Programmi: La semantica di un programma While è
definita a partire dalla semantica dei comandi, o meglio dalla chiusura
transitiva �!⇤ della relazione di transizione dei comandi. Essa definisce
una funzione parziale da n-uple di alberi in m-uple di alberi, ovvero:

[[·]]W : Prog ! (Dn
A ! Dm

A [ {"})

dove " indica la non terminazione di un programma. La semantica [[P]]W

di un programma

P = read(x1, . . . , xn); C; write(y1, . . . , ym)

4. SEMANTICA 139

3. Sintassi

Nel seguito assumeremo di avere a disposizione un insieme infinito e numerabile
di variabili Var. La loro sintassi può essere descritta dalla seguente grammatica
CF:

Var ! V Num

Num ! 1Dig|2Dig| · · · |9Dig

Dig ! "|0Dig|1Dig| · · · |9Dig

Per semplicità saranno indicate da x, y, z, x1, y1, z1 eccetera.
La sintassi di While è definita da una grammatica CF nel modo seguente

dove x, y 2 Var, e d 2 DA (per essere precisi, dovremmo scrivere DA in luogo di
d (similmente per x e Var); tuttavia ci farà comodo nel seguito identificare con d
un arbitrario elemento di d 2 DA, pertanto usiamo questa notazione):

Exp ! x | d | cons(Exp1, Exp2) | hd(Exp) | tl(Exp) | (Exp1 = Exp2)

Com ! x := Exp | Com1; Com2 | skip | while Exp do Com endw

Prog ! read(Listavar); Com;write(Listavar)

Listavar ! x | x, Listavar

Assumiamo inoltre che in Listavar le variabili siano tutte distinte. Si osservi come
in questo linguaggio non vi sia la dichiarazione di tipo per le variabili. Tutte le
variabili infatti possono assumere solo valori di “tipo” DA.

Esempio 16.2. Il seguente programma While è ben definito [darne l’albero
di derivazione per esercizio].

read(x);

y := nil;

while x do

y := cons(hd(x), y);

x := tl(x)

endw;

write(y)

4. Semantica

La semantica di un programma While è data in termini di un sistema di
transizione [26, 31]. Per definirla, dobbiamo prima definire il concetto di stato.
Questo rappresenta la memoria della macchina preposta all’esecuzione di pro-
grammi While. La memoria può essere vista come un nastro in cui ogni cella

otherwise otherwise

if if
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è definita come segue, per ogni d1, . . . , dn 2 DA:

[[P]]W(d1, . . . , dn) =

8
>>><

>>>:

e1, . . . , em se hC, [d1/x1, . . . , dn/xn]i �!⇤ � 0

e � 0(y1) = e1, . . . , � 0(ym) = em

" altrimenti

Esempio 16.3. Come esempio di semantica di un semplice programma While,
consideriamo la semantica del programma P dell’Esempio 16.2 che calcola l’inverso
di una lista rappresentata come un albero sbilanciato a sinistra.

Esercizio 16.4. Si fornisca una semantica formale per i comandi:
• if Exp then C1 else C2, dal significato intuitivo seguente: si valuti l’espressione

Exp; se è diverso da nil si esegua l’istruzione C1, altrimenti si esegua
l’istruzione C2.

• for x := Exp do C endfor. La semantica intuitiva di questo importante
costrutto, ripreso nella Sezione 6, è la seguente: si valuta Exp sul valore
dello stato iniziale. Essa sarà un albero che necessita di esattamente
n � 0 operazioni di tipo tl per restituire l’espressione atomica nil o ai 2
A. L’istruzione C viene quindi ripetuta per n volte; x all’inizio ha il
valore iniziale di Exp, poi viene via via ridotto fino a raggiungere x = nil

o ai 2 A. x e le variabili che occorrono in Exp non possono essere
modificate entro C.

Esercizio 16.5. Si mostri, scrivendo frammenti di codice While in cui sono
introdotte (se servono) ulteriori variabili, che i due costrutti suddetti possono essere
definiti all’interno del linguaggio While (in altri termini che il codice scritto ha,
sulle variabili originarie, la stessa semantica).

Esercizio 16.6. Si mostri come il comando if-then-else dell’esercizio prece-
dente possa essere simulato dal comando for definito nello stesso esercizio. Sug-
gerimento: se ↵ è l’espressione dell’if-then-else, si assegnino le variabili u e v nel
seguente modo: u := (↵ = nil); v := (u = nil); Si eseguano dunque due cicli for:
uno controllato da u che esegue C2 e uno da v che esegue C1.

Esercizio 16.7. Sia A = {a, . . . , z}. Si scriva un Programma While che
verifica se un elemento x1 di A è presente nell’albero x2 (restituisce y = (nil.nil)
in caso a↵ermativo, y = nil altrimenti).

5. Espressività di While e Turing completezza

È possibile rappresentare i numeri naturali in DA. La rappresentazione in DA

del numero n è denotata n. La seguente definizione illustra uno dei modi a nostra
disposizione di codificare i numeri naturali:

0 = nil

n + 1 = (nil . n)

otherwise

if

and
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6.2 Abstract Syntax Trees

In order to be able to write compilers, interpreters, and specialisers in WHILE, we
need a representation of WHILE-programs as data objects (“programs as data”). Since
the WHILE-datatype of binary trees is not ideal for representing strings, it makes
sense to represent programs directly as abstract syntax trees (a concept known from
compilation). Such trees are usually obtained by the so-called lexical analysis phase
that takes the string of ASCII symbols and represent the structure of the program as
abstract syntax tree (for compilation or interpretation purposes). In a way, by directly
using abstract syntax trees as encodings, we dodge all issues of lexical analysis which
in effect makes it even easier to use programs as data.

As binary trees in D have no labels for (inner) nodes we represent abstract syntax
trees (ASTs) as lists. Traditionally, maybe in a compiler textbook, an abstract syntax
tree would look like the one given in Fig. 6.1.

A tree of the form op(t1, . . . , tn)where ti are the children (subtrees) of the labelled
node op is represented as a list the first element of which is a “label” representing
op followed by the encoding of the n subtrees, which, in turn, have to be encoded
the same way. Leaves for this abstract syntax tree are operations without arguments
and the only ones of this kind we have are variables and literals.

6.3 Encoding of WHILE-ASTs in D

In this section we describe how “core” WHILE-programs, i.e. WHILE-programs
without extensions, can be represented as data values in D. As any WHILE-program
using extensions can be translated (compiled) into one written in “core” WHILE, this
does not pose any restrictions on us.

Fig. 6.1 A “traditional”
abstract syntax tree for a
while program

Program

var x ;

:=

var y nil

while

var x ;

:=

var y cons

hd

var x

var y

:=

var x tl

var x

var y

AST
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read(vi); C;write(vj) = ((var.i).(C.(var.j)))

C1; C2 = (; .(C1.C2))

while E do C endw = (while(E.C))

vi := E = (:= .((var.i).E))

vi = (var.i)

d = (quote.d)

cons(E1, E2) = (cons.(E1.E2))

hd(E) = (hd.E)

tl(E) = (tl.E)

(E1 = E2) = (= .(E1.E2))

Table 3. Sintassi concreta del linguaggio While

v1 e y come v2 è data dal seguente albero (parentesi più, parentesi meno):

( (var.1).

( (; .((:= .((var.2).(quote.nil))))).

((while.((var.1).

(; . ((:= .((var.2).(cons. ((hd.(var.1)(var.2))))))).

(:= .((var.1).(tl. (var.1))))

).

(var.2)))))

)

Teorema 16.16. Esiste un interprete in While per While.

Proof. Scrivere l’interprete per esercizio, utilizzando i costrutti di While,
eventualmente estesi con costrutti condizionali tipo case. Suggerimento: utilizzare
le strutture dati ad albero per rappresentare la sintassi concreta dei programmi ed
una pila implementata con una lista per la valutazione delle espressioni. ⇤

La possibilità o↵erta da un linguaggio Turing-completo della metaprogram-
mazione è alla base della esistenza di problemi algoritmicamente non risolvibili. I
limiti di ciò che è calcolabile nascono quindi dalle potenzialità del sistema di calcolo

representing code as data!
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Fig. 6.3 A WHILE-program in concrete and abstract syntax “as data”

The “tags” for commands and expression operators, like := and var, are the extra
atoms introduced earlier. They could also be (in a more tedious fashion) encoded via
natural numbers to avoid extra atoms.

What Next?

We have seen how one can encode WHILE-programs as data in the form of abstract
syntax trees. Since we can also encode pairing, we are in a position to write
a WHILE-interpreter in WHILE, a so-called self-interpreter. We will do this in detail
in the next chapter.

Exercises

1. Assuming that we start counting variables from 0, give the programs as data
representation of the WHILE-program given in Fig. 6.4.

2. Consider the tree t depicted in Fig. 6.5.

a. Why is t a correct tree inD although items like 1, 0, cons, :=, quote, var
appear at its leaves rather than just nil?

b. Write tree t in list notation.
c. Does t correctly encode a WHILE-program in abstract syntax? If this is the

case, write the corresponding WHILE-program p for which !p" = t holds in
concrete syntax. If this is not the case, apply minimal corrections to t such that
the resulting new tree t ′ encodes a WHILE-program p. Write p in concrete
syntax.

Fig. 6.4 Sample program for Exercise 1
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Proof. The overall structure of the program is given in the program fragment of Fig-
ure 4.2, where STEP is similar to the earlier command sequence.

read PD; (* Input (p.d) *)
Pgm := hd PD; (* p = ((var i) c (var j)) *)
D := tl PD; (* D = d (input value) *)
I := hd (tl (hd Pgm)) (* I = i (input variable) *)
J := hd (tl (hd (tl (tl Pgm)))); (* J = j (output variable) *)
C := hd (tl Pgm)) (* C = c, program code *)
Vl := update I D nil (* (var i) initially d, others nil *)
Cd := cons C nil; (* Cd = (c.nil), Code to execute is c *)
St := nil; (* St = nil, computation Stack empty *)
while Cd do STEP; (* do while there is code to execute *)
Out := lookup J Vl (* Output is the value of (var j) *)
write Out;

Figure 4.2: Universal program u.

In contrast to Vl in the preceding version, Vl is now a list of k variables. Initially all
these are bound to nil, except the input variable Vi which is bound to the input d. The
output is now the value of variable Vj at the end of execution. The new version of STEP
is identical to the preceding one, except for the cases:

[((var J).Cr), St ] ) Cd := Cr; X := lookup J Vl; St:=cons X St;

[((:= (var K) E).Cr), St] ) Cd := cons* E doasgn K Cr;

[(doasgn.(K.Cr)), (T.Sr) ] ) Cd := Cr; St := Sr; Vl := update K T Vl;

2

The program u is called a self-interpreter in programming language theory, because it
interprets the same language as it is written in. In computability theory u is called a
universal program, since it is capable of simulating any arbitrary program p.

4.2 A universal program for the I language

Recall the interpreter u1var for one-variable WHILE programs constructed in Section 4.1.1.
We obtain a universal program for I by applying methods from Section 3.7 to u1var.

Program u1var is not a self-interpreter for I, since it itself uses more than one variable,
for example Cd and St. We now describe how a 1-variable universal program can be built,
using the example compilations from Section 3.7.

150 16. CALCOLABILITÀ E LINGUAGGI DI PROGRAMMAZIONE

macchina Mx sul dato y:

U(x, y) =

8
<

:
'x(y) se 'x(y) #

" altrimenti

Traslando questo ragionamento sui linguaggi di programmazione, si ottiene il
concetto di interprete. Siano L ed S due linguaggi di programmazione Turing-
completi; assumiamo che operino sul medesimo insieme di dati D.

Definizione 16.15. Un programma int 2 L tale che, per ogni S-programma
P e per ogni dato d 2 D:

[[int]]L(P, d) = [[P]]S(d)

è un interprete in L di S-programmi (o semplicemente di S).

Ovviamente, se [[P]]S(d) ", allora anche [[int]]L(P, d) ".

L’esistenza di un interprete è assicurata dalla Turing-completezza dei linguaggi
in oggetto. In altri termini in L si deve simulare l’esecuzione del S-programma
P sull’input d istruzione per istruzione. Per far ciò ci si baserà sulla semantica
(formalmente definita) del programma P nel linguaggio S. Un interprete in L per
L programmi è detto metainterprete del linguaggio L.

Vedremo nel dettaglio come realizzare un metainterprete del linguaggio While.
Per altri linguaggi Turing-completi, il lavoro da fare sarà analogo. Innanzitutto
è necessario rappresentare in DA i programmi While. A tal fine definiamo un
insieme finito di atomi:

A = {‘‘ := 00, ‘‘var 00, ‘‘while 00, ‘‘cons 00, ‘‘tl 00, ‘‘hd 00, ‘‘nil 00, ‘‘; 00 , ‘‘quote 00}

In DA possiamo codificare i numeri naturali, mediante sintassi concreta:

n = (nil.(nil. · · · (nil.| {z }
n

nil) · · · ))

Assumendo che l’insieme delle variabili Var = {v0, v1, v2, . . . }, useremo la seguente
codifica per codificare un insieme infinito di variabili: la variabile vi è codificata da
(var.i). Useremo poi una parola chiave per ogni costrutto, espressione o comando,
previsto nella sintassi di While. Useremo quote per dire che l’espressione (un
albero d privo di variabili) non necessita di essere ulteriormente codificata. La
seguente funzione : While �! DA di traduzione da programmi While ad alberi
DA, è definita induttivamente sulla sintassi in tabella 3.

Se vi sono più variabili di ingresso/uscita si userà una lista del tipo: ((var.1).((var.2). · · · (var.n)) · · · ).
Se P è un programma While, allora P 2 DA è detta sintassi concreta di P. Ad
esempio, la sintassi concreta del programma nell’Esempio 16.3, assumendo x come

otherwise

if
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rewrite [Cd, St] by

[((quote D).Cr), St ] ) [Cr, cons D St]
[((var 1).Cr), St ] ) [Cr, cons Vl St]

[((hd E).Cr), St ] ) [cons* E dohd Cr, St]
[(dohd.Cr), (T.Sr)] ) [Cr, cons (hd T) Sr]

[((tl E).Cr), St ] ) [cons* E dotl Cr, St]
[(dotl.Cr), (T.Sr)] ) [Cr, cons (tl T) Sr]

[((cons E1 E2).Cr), St ] ) [cons* E1 E2 docons Cr, St]
[(docons.Cr), (U.(T.Sr)) ] ) [Cr, cons (cons T U) Sr]

[((=? E1 E2).Cr), St ] ) [cons* E1 E2 do=? Cr, St]
[(do=?.Cr), (U.(T.Sr)) ] ) [Cr, cons (=? T U) Sr]

[((; C1 C2).Cr), St ] ) [cons* C1 C2 Cr, St]

[((:= (var 1) E).Cr), St ] ) [cons* E doasgn Cr, St]
[(doasgn.Cr), (W.Sr) ] ) {Cd := Cr; St := Sr; Vl:= W;}
[((while E C).Cr), St ] ) [cons* E dowh (while E C) Cr, St]

[(dowh.((while E C).Cr)), (nil.Sr)] ) [Cr, Sr]

[(dowh.((while E C).Cr)),((D.E).S)])[cons* C (while E C) Cr, S]

[nil, St] ) [nil, St]

Figure 4.1: The STEP Macro.

this is the whole program. The second is the value stack, St, holding intermediate results.
Finally, the third variable is Vl, the store holding the current value of the single program
variable. Initially this is d, the input to program p.

The e↵ect of the sequence of commands STEP, programmed using the rewrite short-
hand notation, is to test what the next instruction in Cd is and update variables Cd, St,
Vl accordingly. Recall the skip and cons* notations from Section 2.1.7.

Expression evaluation and command execution are based on the following invariants:

Code Stack 
Value Stack

(Self) Interpretation

STEP
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subject
program p

�
⇢

⇠
⇡

?
program

specializer
“spec”

??

stage 1
input s

�
⇢

⇠
⇡-

stage 2
input d

�
⇢

⇠
⇡- specialized

program ps

'
&

$
%-- output

�
⇢

⇠
⇡

= data
↵⌦ � = program

Figure 3.4: A program specializer.

ps. In the second stage, program ps is run with the single input d—see Figure 3.4.3 The
specialized program ps is correct if, when run with any value d for p’s remaining input
data, it yields the same result that p would have produced when given both s and the
remaining input data d.

Definition 3.6.1 Assume that S has pairing, that S and T have programs-as-data, and
that S�data = L�data = T�data. Then:

1. A total function f : L�data! L�data is a specializing function from S to T i↵ for
all p 2 S�programs and d 2 S�data f(p.d) 2 T�programs and

[[p]]S(s.d)' [[f (p.s)]]T(d)

3Notation: data values are in ovals, and programs are in boxes. The specialized program ps is first

considered as data and then considered as code, whence it is enclosed in both. Further, single arrows

indicate program input data, and double arrows indicate outputs. Thus spec has two inputs while ps
has only one; and ps is the output of spec.

74 Elements of Computability Theory

1. A set A✓ ID is WHILE decidable i↵ there is a WHILE program p such that [[p]](d)#
for all d 2 ID, and moreover d 2A i↵ [[p]](d) = true.

2. A set A✓ ID is WHILE semi-decidable i↵ there is a WHILE-program p such that for
all d 2 ID: d 2A i↵ [[p]](d) = true.

3. A set A✓ ID is WHILE enumerable i↵ A = ; or there is a WHILE program p such
that for all d 2 ID : [[p]](d)#, and A = {[[p]](d) | d 2 ID}. 2

5.2 Kleene’s s-m-n theorem

Recall from Chapter 3 the notion of a specializer. We now prove that there exists a
program specializer from WHILE to WHILE written in WHILE.

Theorem 5.2.1 There is a WHILE program spec such that for all p2 WHILE�programs
and s 2 WHILE�data, [[spec]](p.s) 2 WHILE�programs, and for all d 2 WHILE�data

[[[[spec]](p.s)]](d) = [[p]](s.d)

Proof. Given a program p:

read X; C; write Y

Given input s, consider the following program ps

read X; X := cons s X; C; write Y

It clearly holds that [[p]](s.d) = [[ps]](d). It therefore su�ces to write a program that
transforms the pair (p.s) into ps, when both ps and p are expressed as data values in
ID. The program p is expressed as data by:

((var i) C (var j))

where C is the data representation of C. Then ps expressed as data is:

((var i) (; (:= (var i) (cons (quote s) (var i))) C) (var j))

Transformation from p to ps is done using the following program, spec, which uses the
list notation of Section 2.1.7. The "cons", ":=" and ";" in ConsExp :=..., NewC:=...,
and AssignX:=... are distinct values in ID, as in Definition 3.2.1.
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spec read PS { (* input list of form [P, S] *)
P := hd PS;  (* P is program [X,B,Y] *)
S := hd tl PS; (* S is input *)
X := hd P; (* X is input var of P *)
B := hd tl P; (* B is statement block of program P *)
Y := hd tl tl P; (* Y is output var of P *)
expr:= [cons,[quote, S],[cons,[var, X],[quote,nil]]]
newAsg := [:=, X, expr];

(* assemble asgmnt: "X := [S, X]" *) 
newB := cons newAsg B;

(* add assignment to old code *)
newProg := [X, newB, Y]

(* assemble new program *)
}
write newProg

Fig. 10.1 A simple specialiser for WHILE

Imagine a program p to be specialised that has two arguments encoded by input
variable XY where X has been assigned hd XY and Y been assigned hd tl XY
using the standard list encoding of tuples. After p has been “specialised” with par-
tial input 3 the resulting program will have input variable, say A, and an extra
assignment XY:=[3,A] added to it. The latter implements the passing of the first
argument provided. Therefore, if the program contained an assignment of the form
Z:=<add>[X,4] (in case no other assignments have been made to X) we’d know
that this was equal toZ:=<add>[3,4], andwe could simplify/optimise the assign-
ment to become Z:=7. This technique is called partial evaluation because just the
parts that become amenable to evaluation by the additional provided partial input are
evaluated statically, and not the entire program and its expressions as is the case at
runtime.

In the above example, an assignment Z:=<add>[Y,4] could not be partially
evaluated as this corresponds to Z:=<add>[A,4] and we don’t know what value
A has until we run the specialised program.

So partial evaluation can be regarded as “efficient program specialisation”
[4, p. 96].

Now the S-m-n theorem is just a generalisation of the S-1-1 theorem (where
m = n = 1). In the S-1-1 case we provided one extra argument to a program p that
originally had 1 + 1 = 2 arguments. Note that in WHILE programs the arguments
must be encoded as one single list because WHILE programs formally only have one
input parameter. Now we generalise the number of parameters. The numberm refers
to the number of arguments provided for specialisation, whereas number n refers to
the number of arguments that remain after specialisation. The program p used for
specialisation then must have used m + n arguments, the resulting specialiser spec
must have m + 1 arguments (one of which is p), and the specialised program must
have, of course, n arguments.
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OBFUSCATION BY SPECIALIZATION?
P: f(n,x) = if n =? 0 then 1

else x * f(n-1,x)

!spec"(P,5) = x ∗ (x ∗ (x ∗ (x ∗ (x ∗ 1))))

No function call and no test⇒ runs faster!

Partial evaluation: a form of specialization that optimizes program P with
respect to s.

➪
Analysis: What depends only on s?

➪
Specialization: Simplify what depends only on s and construct a
T -program for the rest.

c⃝Giaco – Tucson (AZ) 2012 – p.27/61

Specialisation
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AN EXAMPLE OF SPECIALIZATION
Specialization of a program to compute Ackermann’s function:

a(m,n) = if m =? 0 then n+1 else
if n =? 0 then a(m-1,1)
else a(m-1,a(m,n-1)

m = 2 but unknown n:

a2(n) = if n =? 0 then 3 else a1(a2(n-1))
a1(n) = if n =? 0 then 2 else a1(n-1)+1

c⃝Giaco – Tucson (AZ) 2012 – p.28/61

Specialisation
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AN EXAMPLE OF SPECIALIZATION
Specialization of a program to compute the power f (n, x) = xn :
f(n,x) =

if n=0 then 1
else if odd(n) then x*f(n-1,x)

else f(n/2)**2

n = 13 but unknown x :

f_13(x) = x*((x*(x**2))**2)**2

We need Binding-time Analysis (BTA)

c⃝Giaco – Tucson (AZ) 2012 – p.29/61

Specialisation
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BINDING-TIME ANALYSIS

➪
Static: compute at specialization time

➪
Dynamic: generate code to compute at run time

power =

We know n and we will not know x

c⃝Giaco – Tucson (AZ) 2012 – p.30/61

Specialisation
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BINDING-TIME ANALYSIS

➪
Static: compute at specialization time

➪
Dynamic: generate code to compute at run time

power =

If we know n we can decide if it is zero

c⃝Giaco – Tucson (AZ) 2012 – p.31/61

Specialisation
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BINDING-TIME ANALYSIS

➪
Static: compute at specialization time

➪
Dynamic: generate code to compute at run time

power =

.... and if it is odd

c⃝Giaco – Tucson (AZ) 2012 – p.32/61

Specialisation
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BINDING-TIME ANALYSIS

➪
Static: compute at specialization time

➪
Dynamic: generate code to compute at run time

power =

.... and we can compute n − 1 or n/2

c⃝Giaco – Tucson (AZ) 2012 – p.33/61

Specialisation
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BINDING-TIME ANALYSIS

➪
Static: compute at specialization time

➪
Dynamic: generate code to compute at run time

power =

.... and unfold function calls being n bounded below!

c⃝Giaco – Tucson (AZ) 2012 – p.34/61

Specialisation



ⓒ Giacobazzi

Futamura Projections 1971

Compiling and compiler generation by specialization 97

is a T-program equivalent to S-program source, i.e. that one can compile by partial
evaluation. (This is a solution of Exercise 3.1.)

This equation is often called the first Futamura projection [48], and can be verified
as follows, where in and out are the input and output data of source.

out= [[source]]S(in) Assumption
= [[int]]L(source.in) Definition 3.4.1 of an interpreter
= [[[[spec]]Imp(int.source)]]T(in) Definition 3.6.1 of a specializer
= [[target]]T(in) Definition of target

In other words, one can compile a new language S to the output language of the special-
izer, provided that an interpreter for S is given in the input language of the specializer.
Assuming the partial evaluator is correct, this always yields target programs that are
correct with respect to the interpreter. This approach has proven its value in practice.
See [11, 90, 89] for some concrete speedup factors (often between 3 and 10 times faster).

A common special case used by the Lisp and Prolog communities is that Imp= T= L,
so one can compile from a new language S to L by writing an S-interpreter in L.

Speedups from specialization As mentioned before, compiled programs nearly al-
ways run faster than interpreted ones, and the same holds for programs output by the
first Futamura projection. To give a more complete picture, though, we need to discuss
two sets of running times:

1. Interpretation versus execution:

timeint(p.d) versus timeintp(d)

2. Interpretation versus specialization plus execution:

timeint(p.d) versus timespec(int.p)+ timeintp(d)

If program p is to be run just once, then comparison 2 is the most fair, since it accounts
for what amounts to a form of “compile time.” If, however, the specialized program
intp is to be run often (e.g. as in typical compilation situations), then comparison 1 is
more fair since the savings gained by running intp instead of int will, in the long term,
outweigh specialization time, even if intp is only a small amount faster than int.

96 Metaprogramming, Self-application, and Compiler Generation

6.5 Compiling and compiler generation by

specialization

This section shows the sometimes surprising capabilities of partial evaluation for gener-
ating program generators. We will see that it is possible to use program specialization
to compile, if given an interpreter and a source program in the interpreted language; to
convert an interpreter into a compiler:

L

S
=) S T

T

-

by specializing the specializer itself; and even to generate a compiler generator. This is
interesting for several practical reasons:

• Interpreters are usually smaller, easier to understand, and easier to debug than
compilers.

• An interpreter is a (low-level form of) operational semantics, and so can serve as
a definition of a programming language, assuming the semantics of L is solidly
understood.

• The question of compiler correctness is completely avoided, since the compiler will
always be faithful to the interpreter from which it was generated.

The results are called the Futamura projections since they were discovered by Yoshihiko
Futamura in 1971 [48]. We consider for simplicity only specialization without change
in data representation. That is, we assume that all the languages below have concrete
syntax and pairing, and that all the data languages are the same. Suppose we are given

• a specializer spec from L to T written in an implementation language Imp.
• an interpreter int for S-programs which is written in language L; and
• an arbitrary S-program source.

6.5.1 The first Futamura projection

The following shows that given an L to T-specializer, an S interpreter written in L, and an
S-program source, one can get a T program target equivalent to source. Concretely:

target = [[spec]]Imp(int.source)

First Projection
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6.5.2 Compiler generation by the second Futamura projection

The second equation shows that one can generate an S to T compiler written in T, provided
that an S-interpreter in L is given and Imp= L: the specializer is written in its own input
language. Concretely, we see that

compiler = [[spec]]L(spec.int)

is a stand-alone compiler: an L-program which, when applied to a single input source,
yields target. It is thus a compiler from S to L, written in L. Verification is straightfor-
ward as follows:

target = [[spec]]L(int.source) First Futamura projection
= [[[[spec]]L(spec.int)]]T(source) Definition 3.6.1 of a specializer
= [[compiler]]T(source) Definition of comp

Equation compiler = [[spec]]L(spec.int) is called the second Futamura projection. The
compiler generates specialized versions of interpreter int. Operationally, constructing a
compiler this way is hard to understand because it involves self-application — using spec
to specialize itself. But it gives good results in practice, and faster compilation than by
the first Futamura projection.

6.5.3 Compiler generator generation by the third Futamura
projection

Finally, we show (again assuming Imp = L) that

cogen = [[spec]]L(spec.spec)

is a compiler generator : a program that transforms interpreters into compilers. Verifica-
tion is again straightforward:

compiler = [[spec]]L(spec.int) Second Futamura projection
= [[[[spec]]L(spec.spec)]]T(int) Definition 3.6.1 of a specializer
= [[cogen]]T(int) Definition of compiler

The compilers so produced are versions of spec itself, specialized to various interpreters.
This projection is even harder to understand intuitively than the second, but also gives
good results in practice.

98 Metaprogramming, Self-application, and Compiler Generation

6.5.2 Compiler generation by the second Futamura projection

The second equation shows that one can generate an S to T compiler written in T, provided
that an S-interpreter in L is given and Imp= L: the specializer is written in its own input
language. Concretely, we see that

compiler = [[spec]]L(spec.int)

is a stand-alone compiler: an L-program which, when applied to a single input source,
yields target. It is thus a compiler from S to L, written in L. Verification is straightfor-
ward as follows:

target = [[spec]]L(int.source) First Futamura projection
= [[[[spec]]L(spec.int)]]T(source) Definition 3.6.1 of a specializer
= [[compiler]]T(source) Definition of comp

Equation compiler = [[spec]]L(spec.int) is called the second Futamura projection. The
compiler generates specialized versions of interpreter int. Operationally, constructing a
compiler this way is hard to understand because it involves self-application — using spec
to specialize itself. But it gives good results in practice, and faster compilation than by
the first Futamura projection.

6.5.3 Compiler generator generation by the third Futamura
projection

Finally, we show (again assuming Imp = L) that

cogen = [[spec]]L(spec.spec)

is a compiler generator : a program that transforms interpreters into compilers. Verifica-
tion is again straightforward:

compiler = [[spec]]L(spec.int) Second Futamura projection
= [[[[spec]]L(spec.spec)]]T(int) Definition 3.6.1 of a specializer
= [[cogen]]T(int) Definition of compiler

The compilers so produced are versions of spec itself, specialized to various interpreters.
This projection is even harder to understand intuitively than the second, but also gives
good results in practice.

Second Projection
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6.5.2 Compiler generation by the second Futamura projection

The second equation shows that one can generate an S to T compiler written in T, provided
that an S-interpreter in L is given and Imp= L: the specializer is written in its own input
language. Concretely, we see that

compiler = [[spec]]L(spec.int)

is a stand-alone compiler: an L-program which, when applied to a single input source,
yields target. It is thus a compiler from S to L, written in L. Verification is straightfor-
ward as follows:

target = [[spec]]L(int.source) First Futamura projection
= [[[[spec]]L(spec.int)]]T(source) Definition 3.6.1 of a specializer
= [[compiler]]T(source) Definition of comp

Equation compiler = [[spec]]L(spec.int) is called the second Futamura projection. The
compiler generates specialized versions of interpreter int. Operationally, constructing a
compiler this way is hard to understand because it involves self-application — using spec
to specialize itself. But it gives good results in practice, and faster compilation than by
the first Futamura projection.

6.5.3 Compiler generator generation by the third Futamura
projection

Finally, we show (again assuming Imp = L) that

cogen = [[spec]]L(spec.spec)

is a compiler generator : a program that transforms interpreters into compilers. Verifica-
tion is again straightforward:

compiler = [[spec]]L(spec.int) Second Futamura projection
= [[[[spec]]L(spec.spec)]]T(int) Definition 3.6.1 of a specializer
= [[cogen]]T(int) Definition of compiler

The compilers so produced are versions of spec itself, specialized to various interpreters.
This projection is even harder to understand intuitively than the second, but also gives
good results in practice.
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6.5.2 Compiler generation by the second Futamura projection

The second equation shows that one can generate an S to T compiler written in T, provided
that an S-interpreter in L is given and Imp= L: the specializer is written in its own input
language. Concretely, we see that

compiler = [[spec]]L(spec.int)

is a stand-alone compiler: an L-program which, when applied to a single input source,
yields target. It is thus a compiler from S to L, written in L. Verification is straightfor-
ward as follows:

target = [[spec]]L(int.source) First Futamura projection
= [[[[spec]]L(spec.int)]]T(source) Definition 3.6.1 of a specializer
= [[compiler]]T(source) Definition of comp

Equation compiler = [[spec]]L(spec.int) is called the second Futamura projection. The
compiler generates specialized versions of interpreter int. Operationally, constructing a
compiler this way is hard to understand because it involves self-application — using spec
to specialize itself. But it gives good results in practice, and faster compilation than by
the first Futamura projection.

6.5.3 Compiler generator generation by the third Futamura
projection

Finally, we show (again assuming Imp = L) that

cogen = [[spec]]L(spec.spec)

is a compiler generator : a program that transforms interpreters into compilers. Verifica-
tion is again straightforward:

compiler = [[spec]]L(spec.int) Second Futamura projection
= [[[[spec]]L(spec.spec)]]T(int) Definition 3.6.1 of a specializer
= [[cogen]]T(int) Definition of compiler

The compilers so produced are versions of spec itself, specialized to various interpreters.
This projection is even harder to understand intuitively than the second, but also gives
good results in practice.

Third Projection
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The following more general equation, also easily verified from Definition 3.6.1, sums
up the essential property of cogen (we omit language L for simplicity):

[[p]] (s.d) = [[[[spec]] (p.s) ]] d = ... = [[[[[[cogen]] p ]] s ]] d

Further, cogen can produce itself as output (Exercise 6.9.)
While the verifications above by equational reasoning are straightforward, it is far

from clear what their pragmatic consequences are. Answers to these questions form the
bulk of the book [89].

6.5.4 Speedups from self-application

A variety of partial evaluators generating e�cient specialized programs have been con-
structed. Easy equational reasoning from the definitions of specializer, interpreter, and
compiler reveals that program execution, compilation, compiler generation, and compiler
generator generation can each be done in two di↵erent ways:

out = [[int]](source.input) = [[target]](input)
target = [[spec]](int.source) = [[compiler]](source)
compiler = [[spec]](spec.int) = [[cogen]](int)
cogen = [[spec]](spec.spec) = [[cogen]](spec)

The exact timings vary according to the design of spec and int, and with the implemen-
tation language L. We have often observed in practical computer experiments [90, 89]
that each equation’s rightmost run is about 10 times faster than the leftmost. Moral:
self-application can generate programs that run faster!

6.5.5 Metaprogramming without order-of-magnitude loss of
e�ciency

The right side of Figure 6.2 illustrates graphically that partial evaluation can substan-
tially reduce the cost of the multiple levels of interpretation mentioned in Section 6.2.3.

A literal interpretation of Figure 6.2 would involve writing two partial evaluators,
one for L1 and one for L0. Fortunately there is an alternative approach using only one
partial evaluator, for L0. For concreteness let p2 be an L2-program, and let in, out be
representative input and output data. Then
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OBFUSCATION BY INTERPRETATION?

Y. Futamura, Partial Evaluation of Computation Process, 1971

target := !spec"(int,source)

A simple programming language:
;; A NORMA program works on two registers, x and y,
;; each holding a number ( n = list of n 1’s )
;; INITIALLY x = input, y = 0.
;; AT END: output is y’s final value.
;;
;; Norma syntax: (only 7 instructions)
;;
;; pgm ::= ( instr* )
;; instr ::= X:=X+1 | X:=X-1 | Y:=Y+1 | Y:=Y-1
;; | ifX=0goto addr) | ifY=0goto addr
;; | goto addr
;; addr ::= 1*
Still a Turing-complete language!!!

c⃝Giaco – Tucson (AZ) 2012 – p.37/61

Compilation
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OBFUSCATION BY INTERPRETATION?

Y. Futamura, Partial Evaluation of Computation Process, 1971

target := !spec"(int,source)
;; Data: a NORMA program. It computes 2 * x + 2.
0: (Y:=Y+1 ;
1: Y:=Y+1 ;
2: ifX=0goto 1 1 1 1 1 1 1 ;
3: Y:=Y+1 ;
4: Y:=Y+1 ;
5: X:=X-1 ;
6: goto 1 1 ;
7: )

!P"(2) = 6

c⃝Giaco – Tucson (AZ) 2012 – p.38/61
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OBFUSCATION BY INTERPRETATION?
target := !spec"(int,source)

source =

0: (Y:=Y+1 ;
1: Y:=Y+1 ;
2: ifX=0goto 1 1 1 1 1 1 1 ;
3: Y:=Y+1 ;
4: Y:=Y+1 ;
5: X:=X-1 ;
6: goto 1 1 ;
7: )

target =

...still computes 2 · x + 2 but it is a functional program!!

c⃝Giaco – Tucson (AZ) 2012 – p.45/61

Compilation



ⓒ Giacobazzi



ⓒ Giacobazzi

C↵,�(x) =

⇢
� if x = ↵

0 otherwise

Zk(x) = 0k

Distinguish if X computes Cα, β 
from Cα’,β’ for any

(α, β)≠(α’,β’)
is NON COMPUTABLE!

Idea: It is difficult distinguish (Cα, β , Dα, β) from 
(Zk , Dα, β) by VBB access to these programs!!

Simply compute X(α) for 
Poly(k) steps and check!

Back to the Proof for 2TMs (C & D)

↵,� 2 {0, 1}k Secrets!!

D↵,�(X) =

⇢
1 if X ⌘ C↵,�

0 otherwise
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Black-Box Simulator

D↵,�

C↵,�

Idea: Proof for 2TMs (C,D)

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)

Virtual Black-Box 



ⓒ Giacobazzi

1

Black-Box Simulator

D↵,�

0

Zk

Idea: Proof for 2TMs (C,D)

Virtual Black-Box 

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)



ⓒ Giacobazzi

1

Black-Box Simulator

D↵,�

0

Zk

Idea: Proof for 2TMs (C,D)

Virtual Black-Box 0

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)



ⓒ Giacobazzi

1

Black-Box Simulator

D↵,�

0

Zk

Idea: Proof for 2TMs (C,D)

Virtual Black-Box 0

Pr[A(O(C↵,�),O(D↵,�)) = 1]� Pr[SC↵,� ,D↵,� (1k) = 1]  2�⌦(k)



ⓒ Giacobazzi

Any program P is the partial evaluation 
of an interpreter Int wrt a residual program Q

The Proof for one generic TM

P

96 Metaprogramming, Self-application, and Compiler Generation

6.5 Compiling and compiler generation by

specialization

This section shows the sometimes surprising capabilities of partial evaluation for gener-
ating program generators. We will see that it is possible to use program specialization
to compile, if given an interpreter and a source program in the interpreted language; to
convert an interpreter into a compiler:

L

S
=) S T

T

-

by specializing the specializer itself; and even to generate a compiler generator. This is
interesting for several practical reasons:

• Interpreters are usually smaller, easier to understand, and easier to debug than
compilers.

• An interpreter is a (low-level form of) operational semantics, and so can serve as
a definition of a programming language, assuming the semantics of L is solidly
understood.

• The question of compiler correctness is completely avoided, since the compiler will
always be faithful to the interpreter from which it was generated.

The results are called the Futamura projections since they were discovered by Yoshihiko
Futamura in 1971 [48]. We consider for simplicity only specialization without change
in data representation. That is, we assume that all the languages below have concrete
syntax and pairing, and that all the data languages are the same. Suppose we are given

• a specializer spec from L to T written in an implementation language Imp.
• an interpreter int for S-programs which is written in language L; and
• an arbitrary S-program source.

6.5.1 The first Futamura projection

The following shows that given an L to T-specializer, an S interpreter written in L, and an
S-program source, one can get a T program target equivalent to source. Concretely:

target = [[spec]]Imp(int.source)
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Whenever we disclose the code we 
always disclose more that its 

input/output relation!!

The notion of interpretation is fundamental here!
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1. O(M) computes the same function as M. 
2. O(M) running time1 is the same as M. 
3. For any efficient algorithm2 A (Analysis) that computes a 

predicate p(M), there is an efficient (oRacle) algorithm2 RM that 
for all M computes p(M): 

A Turing machine O is a TM obfuscator if for any Turing 
machine  M: 

TM Obfuscator 

2Probabalistic polynomial-time Turing machine

1Polynomial slowdown is permitted

Pr[A(O(M)) = p(M)]   ≈   Pr[RM(1|M|) = p(M)] 
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Static Disassembly [2]:Static Disassembly: 
1. Not all properties 
2. Not difficult 
3. Not virtual black box?

Signature obfuscation: 
1. Not all properties 
2. Not virtual black box?
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Barak’s Model Limitation

• Virtual Black Box: 

– Not surprising in some sense (but, still excellent work)

– Does not corresponds to what attackers/researchers are doing: 

“the virtual black box paradigm for obfuscation is inherently 
flawed”


• Too general: 

– obfuscator must work for all programs

– for any property (Barak addresses this in the extensions)
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Garg et al., CRYPTO 2013

The Future?
Indistinguishability Obfuscation

Provable
Security

Yury Lifshits

Idea of
Provable
Security
Ways to Achieve
Security

Basic
Results
Impossibility of
obfuscation
Property Hiding
Encrypted
computation

Overview of
Further
Research
Mobile
cryptography
Black-box Security
Practical Approach

Summary

Property Hiding

Slide from Lecture 1 — your turn to explain.

Instance: two families of programs ⇧1 and ⇧2

Adversary task: given a program P 2 ⇧1 [ ⇧2 to
decide whether P 2 ⇧1 or P 2 ⇧2.

Desirable protection: make adversary task as difficult as
well-known computationally hard problem is.
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Garg et al., CRYPTO 2013

The Future?
Indistinguishability Obfuscation

	 		 		 	

Assumption:		
indistinguishability	obfuscation	for	all	circuits		
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Assumption: 1 GHz processor 

Current limitations
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About (im)possibility
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On THE (im)possibility result!

CLASSES OF RECURSIVELY ENUMERABLE SETS
AND THEIR DECISION PROBLEMS^)

BY

H. G. RICE

1. Introduction. In this paper we consider classes whose elements are re-
cursively enumerable sets of non-negative integers. No discussion of recur-
sively enumerable sets can avoid the use of such classes, so that it seems de-
sirable to know some of their properties. We give our attention here to the
properties of complete recursive enumerability and complete recursiveness
(which may be intuitively interpreted as decidability). Perhaps our most
interesting result (and the one which gives this paper its name) is the fact
that no nontrivial class is completely recursive.

We assume familiarity with a paper of Kleene [5](2), and with ideas
which are well summarized in the first sections of a paper of Post Í7].

I. Fundamental definitions
2. Partial recursive functions. We shall characterize recursively enumer-

able (r.e.) sets of non-negative integers by the partial recursive functions of
Kleene. The set characterized (or, as we shall say more frequently, enumer-
ated) by a partial recursive function of one variable will be taken as the
range of values of the function. A function undefined for all arguments (and
thus producing no values) will be considered to produce an enumeration of
the empty set o.

Kleene has shown [5, pp. 50-58] that a Gödel enumeration of the partial
recursive functions is possible, so that we may designate any partial recursive
function of one variable as <j>n(x), where n is a Gödel number of the function.
Actually, it requires only a minor adjustment of Kleene's constructions to
insure that, not only does every function have at least one number, but that
every non-negative integer n is the number of some function. We shall assume
this to be the situation, and shall make one other minor adjustment: <t>o(x)
is the identity function.

Kleene further showed the existence of a recursive predicate 7"(x, y, z) and
a primitive recursive function U(x) such that

Presented to the Society, December 28, 1951; received by the editors of the Journal for
Symbolic Logic, November 16, 1951, subsequently transferred to the Transactions, and re-
ceived in revised form May 26, 1952.

(') Most of the results in this paper were contained in a thesis written under Professor
Paul Rosenbloom, to whom the author wishes to express his gratitude, and presented toward
the degree of Doctor of Philosophy at Syracuse University.

(l) Numbers in brackets refer to the bibliography at the end of the paper.
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1952

We can only approximate!!!
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?{ P  |   P ≈ Q }W
Code
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Another (im)possibility result!

2001

We can only partially obfuscate!!!
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What does it mean  
being obscure?

…a different viewpoint from PL
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The Attack Model

The computing power and memory size 
of computers double every 18 months 

Attackers need computers to attack computers

Size of programs grows proportionally 

Analysis is exponential in the program size
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Attackers need computers to attack computers
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Whole-program view

Good programs are well-structured  
and have concise invariants 

Obscure programs are badly-structured  
and have messy invariants 
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PROTECTION BY OBSCURITY: CODE OBFUSCATION
O : P → P is a code obfuscator if it is an obfuscating compiler:

➪
It is potent: O(P) is more complex (ideally unintelligible) than P ;

➪
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O : P → P is a code obfuscator if it is an obfuscating compiler:

➪
It is potent: O(P) is more complex (ideally unintelligible) than P ;

➪
It preserves the observational behaviour of programs !O(P)" = !P"
[C. Collberg et al. ’97, ’98]

Input

Output

τ

P → τ!P"

Input

Output
c⃝Giaco – Rennes 2012 – p.7/63IN PRACTICE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk + reordering):
mov eax, [edx+0Ch]
jmp +3
push ebx
dec eax
jmp +4
inc eax
jmp -3
call ReleaseLock
jmp +2
push [eax]
jmp -2

c⃝Giaco – Cagliari 2012 – p.5/50

IN PRACTICE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk + reordering):
mov eax, [edx+0Ch]
jmp +3
push ebx
dec eax
jmp +4
inc eax
jmp -3
call ReleaseLock
jmp +2
push [eax]
jmp -2

c⃝Giaco – Cagliari 2012 – p.5/50

CODE PROTECTION BY OBFUSCATION
O : P → P is a code obfuscator if it is an obfuscating compiler:

➪
It is potent: O(P) is more complex (ideally unintelligible) than P ;

➪
It preserves the observational behaviour of programs !O(P)" = !P"
[C. Collberg et al. ’97, ’98]

Input

Output

τ

P → τ!P"

Input

Output
c⃝Giaco – Cagliari 2012 – p.4/50

Obfuscation as Compilation
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(outside crypto)
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Soundness
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On the Completeness Class

Giacobazzi et al. ACM POPL 2015

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function  

abc

: ⌃�!⌃ [ {?}, with ? denoting
non-termination:

 
abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

 

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive  is computed by a program R 2 Imp such
that JRK(P, S) =  (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P )K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S)) 
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [ {x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P )K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P ) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have  (P, S) = JP>K(S) and therefore Jg(R,P )K =JP>K, which implies that g(R,P ) 2 C
↵

.

Because the function �P 2 Imp. g(R,P ) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

( JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise
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an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:
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sult in an incomplete one. This phenomenon is well known in static
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all is abstracted into a single (top) value corresponding to the don’t
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: ⌃�!⌃ [ {?}, with ? denoting
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Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C
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1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q
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exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C
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and C
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are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
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typical elements ⇢. If |Var(P )| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [ L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [ JC KL b MT )�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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typical elements ⇢. If |Var(P )| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [ L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [ JC KL b MT )�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)
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In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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typical elements ⇢. If |Var(P )| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [ L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [ JC KL b MT )�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(
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�

� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)
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In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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On the Completeness Class

C(↵) def
= {P program | ↵(JP K) = JP K↵}
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typical elements ⇢. If |Var(P )| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [ L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [ JC KL b MT )�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�
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�

� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)
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In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:
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Similarly we can define a completeness class of all Boolean expres-
sions.
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.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

Infinite

typical elements ⇢. If |Var(P )| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [ L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [ JC KL b MT )�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
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�

⇢ 2 S
�

� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
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In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
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=
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P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(
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The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
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In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [ L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [ JC KL b MT )�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

……
;

On the Completeness Class

C(↵) def
= {P program | ↵(JP K) = JP K↵}
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Extensional

C(↵) def
= {P program | ↵(JP K) = JP K↵}

P complete, JP K = JQK 6) Q complete

P : x := y

Q : x := y + 1; x := x� 1

gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a
generic program statement. Our method follows an orthogonal pat-
tern. We are not interested in refining an abstract domain for ob-
taining completeness with respect to a given class of programs, but
rather in studying the class of programs for which a given abstrac-
tion is complete. This different starting point leads us to design a
deductive system for deriving a completeness proof for programs
on a given abstraction. This new perspective allows us to decom-
pose the problem of attaining a complete abstraction for a given
program, which becomes modular and inductive on the program’s
syntax. The ubiquity of completeness properties in static analysis is
also studied in [22], where it is argued how completeness can play
a beneficial role for designing static analyses by reasoning on the
completeness properties of their underlying abstract domains.

Provably precise static analyses usually make some assumption
on the syntactic form of the analyzed program. For instance the
precise interprocedural analysis of [21] computes, for each pro-
gram point, all the affine relations among program variables. What
the authors call “precision” is effectively our notion of complete-
ness. They achieve precision by focusing on a particular class of
programs, namely affine programs. Affine programs are such that:
(i) all guards are non-deterministic; and (ii) the right-hand side of
assignments are either affine expressions or unknown values. Sim-
ilarly, in type systems, it is customary to ignore the guards in or-
der to prove the completeness of the type inference algorithm, e.g.,
in [9]. We argued in this article that the main problem for prov-
ing completeness is the handling of assignments and of Boolean
guards.

Our research follows the lines of a recent approach by Cousot
and Cousot [5] who put forward a type system for typing the struc-
ture of an abstract interpretation. A type represents inductively the
way an abstraction has been built by composing simpler abstrac-
tions through systematic domain operations like reduced product.
It could be interesting to investigate the possibility of combining
our proof system with a structural type system for abstract inter-
pretations as in [5], with the aim of providing along a derivation in
`

A

some additional information about the used sub-domains and
their composition through domain operations.

8. Conclusion

Static analysis is, by design, incomplete. Nevertheless, experience
has shown that it can be made precise enough to be used for ver-
ification [6, 11]. We envision static analyses which in addition to
the inferred invariants also provide completeness certificates. The
completeness certificate is used to provide confidence to the anal-
ysis of alarms. As a foundational step towards this goal, we in-
troduced a theoretical framework to prove the completeness of a
static analysis. We have shown that the source of incompleteness
lies in the handling of Boolean guards and, for relational abstrac-
tions, in assignments. For nonrelational abstractions we introduced
an abstraction-independent core proof system which pushes the
completeness of the analysis to the numerical expressions and the
Boolean guards of conditionals and loops. For relational abstrac-
tions, instead, the structure of complete assignments has to be de-
rived in advance in order to obtain a sound proof system. We argued
that the designer of a static analyzer should also provide complete-
ness conditions for the Boolean guards and that these conditions

could be automatically checked by further, yet less sophisticated,
static analyses—we leave the design of such automated analyses
for future work. We studied the completeness of Boolean guards in
widely used numerical abstractions such as Intervals and Octagons.
Most known abstract domains have been indeed designed to pre-
cisely capture properties of some given programs. This is justified
by the fact that the class of completeness C(A) of any abstraction
A is always an infinite set. Therefore, deriving an abstract domain
which is complete for a specific program P provides at the same
time a domain which is complete for an infinite class of programs.

As future work, we think that proving completeness of static
analyses could be also beneficial to: (i) automatically apply abstract
code repairs [18]—if the analysis of the original and the repaired
programs can both be proven complete, then the repair is very likely
to have fixed a concrete bug; (ii) validate refactorings [8]—among
different program refactorings one may only keep the one(s) for
which she can prove it preserves the completeness of the analy-
sis; (iii) provide a better understanding of why over-approximating
analyses of arrays [7] works well in practice even without perform-
ing under-approximations, argued as necessary in [15].
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+ �

�x.g(f(x)) and f(S) =

�

f(s)
�

� s 2 S
 ✓ T . Functions

ordered point-wise give rise to a lattice, namely f, g : L�!D are
such that f v g if for any x 2 L : f(x) 

D

g(x). We denote with
t and u the lub and glb of functions. f : L�!D on complete
lattices is additive (co-additive) if for any Y ✓ L, f(_

L

Y ) =

_
D

f(Y ) (f(^
L

Y ) = ^
D

f(Y )). A function f is continuous
when it preserves lubs’s of chains. Co-continuity is dually defined.
For a continuous function f : lfp(f) =

V

�

x
�

� x = f(x)
 

=

W

n2N f
n

(?) where f0
(?) = ? and fn+1

(?) = f(fn

(?)). The
gfp is dually defined for co-continuous functions.

Abstract interpretation. It is known that abstract domains can be
equivalently specified as Galois connections or closure operators
on complete lettices (cf. [5]). Let C and A be complete lattices, a
pair of monotone functions ↵ : C�!A and � : A�!C forms a
Galois connection (GC) between C and A if for every x 2 C and
y 2 A we have ↵(x) 

A

y , x 
C

�(y). ↵ (resp. �) is the left-
adjoint (resp. right-adjoint) to � (resp. ↵) and it is additive (resp.
co-additive). Given an additive (resp. co-additive) function ↵ (resp.
�) we have a GC h↵,↵+i (resp. h��, �i) by considering its right
(resp. left) adjoint ↵+

= �x.
W{y | ↵(y)  x} (resp. ��

=

�x.
V{y | x  �(y)}). An upper closure operator (or simply a

closure) on a complete lattice hC,i is an operator � : C�!C

which is monotone, idempotent, and extensive (i.e., x  �(x)).
We denote with uco(C) the set of all closure operators on the poset
L. If h↵, �i is a GC between C and A then � � ↵ 2 uco(C).
If ↵ 2 uco(C) then h↵, idi is a GC between C and ↵(C).
In this case huco(C),v,t,u,�x.C, idi forms itself a complete
lattice [23], which is isomorphic, up to representation of abstract
elements, to the set of all possible abstractions Abs(C) of C, i.e.,
Abs(C)

⇠
=

uco(C). Because of this, in the following we will
always identify an abstract domain A 2 Abs(C) with its (unique)
associated closure operator ↵ 2 uco(C) such that ↵(C) = A.
In the following we will used both Abs(C) and uco(C) in order
to distinguish respectively the use of closures as abstract domains
and as abstraction functions. Recall that the set of fix-points A of
a closure ↵ is always a Moore family, A = M(A)

def
= {^S | S ✓

A}. Therefore ^? = > 2 A. Here the bottom element is id =

�x.x, the top is �x.>
C

and for every ↵,� 2 uco(C): ↵ is more
concrete than � iff ↵ v � iff for each y 2 C. ↵(y)  �(y) iff
�(C) ✓ ↵(C), (u

i2I

↵
i

)(x) = ^
i2I

↵
i

(x); (t
i2I

↵
i

)(x) = x
iff for each i 2 I. ↵

i

(x) = x. An abstraction ↵ 2 uco(C) is
disjunctive when ↵(C) is a join-sublattice of C, which holds iff
↵ is additive (cf. [5]). Examples of abstract domains include the
abstract domain of intervals:

Int = �X ✓ Z. [min(X),max(X)]

where:

min(X) =

⇢

x 2 X if 8y 2 X. x  y
�1 otherwise

max(X) =

⇢

x 2 X if 8y 2 X. y  x
+1 otherwise

In this case Int 2 uco(}(Z)). The non-relational lift of intervals
to n-dimensions is straightforward and it is defined in terms of a
function ext : Int(}(Z))⇥[0, n�1]�!}(Zn

) defined as follows:
if I 2 Int(}(Z)) is an interval with boundaries in Z[{�1,+1}
and ~x

r

is the projection of the vector ~x 2 Zn along the affine
subspace r of Zn of dimension 1 (i.e., a line), then we define

ext(I, r)
def
=

�

~x 2 Zn

�

� ~x
r

2 I
 

For i 2 [0, n � 1] we denote r
i

the i-th dimension, namely the
affine subspace given by the set r

i

=

�

~x
�

� 8j 6= i. ~x
j

= 0

 

. In

this case Intn 2 uco(}(Zn

)) is such that:

Intn(X) =

\

�

ext(I, r
i

)

�

� X ✓ ext(I, r
i

), 0  i  n� 1

 

The Octagon abstract domain [20] generalizes the Zone abstraction
introduced for model checking timed automata in [16] and based
on Difference-Bound Matrices (DBM), i.e., constraints of the form
v
j

� v
i

 c. Octagons are defined by enhancing DBMs including
also constraints of the form v

j

+ v
i

 c. Let m be a matrix having
coefficients m

i,j

2 Z [ {�1,+1}. Then

Octm =

�

~x 2 Zn

�

� 8i, j. ± ~x
j

± ~x
i

 m
i,j

 

If X 2 }(Zn

) then:

Oct(X) =

\

�

Octm
�

� X ✓ Octm
 

Intn,Oct 2 uco(}(Zn

)) and Oct v Intn. Algorithms for having
unique canonical representations of Octagons have been developed
in order to guarantee that these domains hold a GC (see [20]).

Soundness and completeness. If f : C�!C is a continuous
function and ↵ 2 uco(C) then f always has a best correct ap-
proximation in ↵(C) which is f↵

def
= ↵ � f � ↵. Any approxima-

tion f ]

: ↵(C)�!↵(C) of f in ↵(C) is sound if f↵ v f ]. In this
case we have the fix-point soundness ↵(lfpf)  lfp(f↵

)  lfp(f ]

)

(cf. [4]). f ] is complete when ↵ � f = f ] � ↵ (see [5, 21]) which
holds iff ↵ � f = ↵ � f � ↵ (cf. [13]). Therefore the possibil-
ity of defining a complete approximation f ] of f on some ab-
stract domain ↵ only depends on f and ↵. In this case we have
the so called Kleene fix-point transfer or fix-point completeness:
↵(lfpf) = lfp(f↵

) = lfp(f ]

) [4].

The problem of making abstract domains complete has been
solved in [13]. A constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete sim-
plification, called complete core, of any domain, making it com-
plete, for a given continuous function f , is given as a solution
of an abstract domain equation. Let f : C�!C be continu-
ous and ↵ 2 uco(C), and consider the following basic operators
R

f

, C
f

: uco(C)�!uco(C) transforming closures (therefore ab-
stractions):

R
f

def
= �X.M(

S

y2X

max(f�1
(#y)))

C
f

def
= �X.

�

y 2 C
�

�

max(f�1
(#y)) ✓ X

 

The most concrete � w ↵ such that � is complete for f is
the complete core of ↵. The most abstract � is complete for
f is the complete shell of ↵. These abstract domains can be
constructively defined as a fix-point iteration on abstract do-
mains, which are respectively R

f

(↵) = gfp(�X. ↵ uR
f

(X))

and C
f

(↵) = lfp(�X. ↵ t C
f

(X)). It is worth noting that the
complete core and shell are adjoint abstract domain transformers,
i.e., they form a GC on the lattice of all abstract domains: for any
↵, ⌘ 2 uco(C): C

f

(⌘) v ↵ , ⌘ v R
f

(↵).

3. Syntax, Semantics, and Abstract Semantics
We consider a simple deterministic while-language Imp as defined
in [24]. We often view programs as both sequences of commands
and sets of commands.

C ::= skip | x := a | C ;C | if b then C |
while b do C

e ::= a | b
a ::= a + a | a � a | x 2 Var | k 2 Z
b ::= t | f | a = a | a > a | b ^ b | b _ b | ¬b

Var(s) denote the set of variables in the syntactic (command or
expression) s. ⌃ def

= Var�!}(Z) denotes the set of stores, with
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For any nontrivial abstraction α 
there always exists an incomplete program! 

Similar to Rice’s Theorem [1952] 

C(↵) def
= {P program | ↵(JP K) = JP K↵}

C(↵) = All Programs , ↵ 2 {�x.x, �x.>}
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EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function  

abc

: ⌃�!⌃ [ {?}, with ? denoting
non-termination:

 
abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
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PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):
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We first prove that C
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is productive. The proof is by many-to-one
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, which is denoted K �
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, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q
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proved that Q
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(⌃) defined as follows:
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JP>K(S) otherwise
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total recursive function g : Imp ⇥ Imp�!Imp such that for any
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(⌃) we have Jg(R,P )K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.
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that C
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is productive. The proof that C
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is productive is analogous
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, by
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EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P
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and P
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↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
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associated with the following
partial recursive function  

abc

: ⌃�!⌃ [ {?}, with ? denoting
non-termination:
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a if x = a
b if x = c
? otherwise
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K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
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which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q
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ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re
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= Imp iff
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true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
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(↵ 6= id & ↵ 6= >)

typical elements ⇢. If |Var(P )| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [ L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [ JC KL b MT )�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t
 

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
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The key observation is that if the query is exactly representable
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is complete, then answering the question in the abstract is the same
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LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵  

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵  

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.
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Completeness is harder to prove than termination

C(↵) def
= {P program | ↵(JP K) = JP K↵}
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C(↵) def
= {P program | ↵(JP K) = JP K↵}

Automating the proof that 
α is complete for P is impossible 

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function  

abc

: ⌃�!⌃ [ {?}, with ? denoting
non-termination:

 
abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

 

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive  is computed by a program R 2 Imp such
that JRK(P, S) =  (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P )K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S)) 
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [ {x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P )K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P ) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have  (P, S) = JP>K(S) and therefore Jg(R,P )K =JP>K, which implies that g(R,P ) 2 C
↵

.

Because the function �P 2 Imp. g(R,P ) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

( JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise
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concern with recursive, namely decidable, abstractions ↵, i.e., such
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and P
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K(⌃) = A andJP
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associated with the following
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: ⌃�!⌃ [ {?}, with ? denoting
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K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
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Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
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1 Note that, for general recursive enumerable sets A and recursive ↵(A)
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This means that (due to c) the program Q

abc

exists but we may not have a
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tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.
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and C
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programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re
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that C
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the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S)) 
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [ {x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P )K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P ) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have  (P, S) = JP>K(S) and therefore Jg(R,P )K =JP>K, which implies that g(R,P ) 2 C
↵

.

Because the function �P 2 Imp. g(R,P ) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

( JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise
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(↵ 6= id & ↵ 6= >)

On the Completeness Class

Completeness is harder to prove than termination



ⓒ Giacobazzi
C↵ 6�m C↵ C↵ 6�m C↵and

On Completeness
and impossibility

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function  

abc

: ⌃�!⌃ [ {?}, with ? denoting
non-termination:

 
abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

 

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive  is computed by a program R 2 Imp such
that JRK(P, S) =  (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P )K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S)) 
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [ {x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P )K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P ) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have  (P, S) = JP>K(S) and therefore Jg(R,P )K =JP>K, which implies that g(R,P ) 2 C
↵

.

Because the function �P 2 Imp. g(R,P ) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

( JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise
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EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function  

abc

: ⌃�!⌃ [ {?}, with ? denoting
non-termination:

 
abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

 

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive  is computed by a program R 2 Imp such
that JRK(P, S) =  (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P )K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S)) 
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [ {x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P )K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P ) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have  (P, S) = JP>K(S) and therefore Jg(R,P )K =JP>K, which implies that g(R,P ) 2 C
↵

.

Because the function �P 2 Imp. g(R,P ) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

( JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise
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{Q | [[P ]] =
[[Q]]}

obfuscated

de-obfuscated



ⓒ Giacobazzi

Let us mix all this together



ⓒ Giacobazzi

Programming style

Algorithm

How to make code obscure
via Yoshihiko Futamura 1971

[[P ]](d) = [[interp]](P, d)
= [[ [[spec]](interp, P ) ]](d)



ⓒ Giacobazzi

Giacobazzi et al PEPM 2012

Programming style

Algorithm

Obf↵(P )P

Idea!!

How to make code obscure
via Yoshihiko Futamura 1971

[[P ]](d) = [[interp]](P, d)
= [[ [[spec]](interp, P ) ]](d)

=



ⓒ Giacobazzi

Obf↵(P ) = [[spec]](interp, P )

I: Data Obfuscation



ⓒ Giacobazzi

A TWISTED INTERPRETER FOR v !→ 2v

input P, d ; Program to be interpreted, and its data
pc := 2; Initialise program counter and obfuscated store:
store := [in !→ obf (d), out !→ obf (0), x1 !→ obf (0), . . .];

while pc < length(P) do
instruction := lookup(P, pc);
case instruction of Dispatch on syntax
skip : pc := pc + 1; Obfuscate values when stored:
x := e : store := store[x !→ obf (eval(e, store))]; pc := pc + 1;

. . . endw ;

output dob(store[out ]);
obf (V ) = 2 ∗ V ; dob(V ) = V /2 Obfuscation/de-obfuscation
eval(e, store) = case e of

constant : obf (e)

variable : dob(store(e)) De-obfuscate variable values
e1+ e2 : eval(e1, store) + eval(e2, store)

e1− e2 : eval(e1, store)− eval(e2, store)

. . .

c⃝Giaco – Grenoble 2012 – p.38/59

Obf↵(P ) = [[spec]](interp, P )

Weird Interpretation: v → 2v



ⓒ Giacobazzi

OUTPUT FROM DATA OBFUSCATION

The source program is automatically transformed into this equivalent
obfuscated one

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x − 1

endw
6.output y ;
7.end

!−→

1.input x ;
1.5.x := 2 ∗ x ; Obfuscate input x
2.y := 2 ∗ 2; Obfuscate y := 2
3.while x/2 > 0 do De-obfuscate x

4.y := 2 ∗ (y/2+ 2);
5.x := 2 ∗ (x/2− 1)

endw
6.output y/2; De-obfuscate output
7.end

c⃝Giaco – Grenoble 2012 – p.39/59

Obf↵(P ) = [[spec]](interp, P )

Weird Interpretation: v → 2v



ⓒ Giacobazzi

SIGN ANALYSIS

➪
Sign analysis is complete for multiplication ∗: exact information.

➪
Sign analysis is incomplete for addition +: imprecise information

∗ − 0 +

− + 0 −

0 0 0 0

+ − 0 +

+ − 0 +

− − − ⊤(!)

0 − 0 +

+ ⊤(!) + +

Our trick: ...let the interpreter evaluate!

eval(e, store) = case e of
e1+ e2 : eval(e1, store) + eval(e2, store)

e1 ∗ e2 : let v1 = eval(e1, store), v2 = eval(e2, store)

in v1 ∗ (v2− 1)+v1

c⃝Giaco – Grenoble 2012 – p.40/59

Obf↵(P ) = [[spec]](interp, P )

Sign Attack



ⓒ Giacobazzi

SIGN ANALYSIS

➪
Sign analysis is complete for multiplication ∗: exact information.

➪
Sign analysis is incomplete for addition +: imprecise information

P:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y ∗ y ;
5.x := x − 1

endw
6.output y ;
7.end

"−→

P’:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y ∗ (y − 1) + y ;
5.x := x − 1

endw
6.output y ;
7.end

Sign analysis yields y "→ + in P, but it yields y "→ ⊤ in P’.

c⃝Giaco – Grenoble 2012 – p.41/59

Obf↵(P ) = [[spec]](interp, P )

Sign Attack



ⓒ Giacobazzi

GENERALIZING SIGN: DATA-OBFUSCATION
We consider variable splitting:

v ∈ Var(P) is split into ⟨v1, v2⟩ such that
v1 = f1(v), v2 = f2(v) and v = g(v1, v2)

f1(v) = v ÷ 10

f2(v) = v mod 10

g(v1, v2) = 10 · v1 + v2

And the interval analysis: ι(x) = [min(x),max(x)]

P :

[

v = 0;

while v < N {v ++} !P"ι = λv . [0,N ]

c⃝Giaco – Rennes 2012 – p.35/63

Interval Attack



ⓒ Giacobazzi

GENERALIZING SIGN: DATA-OBFUSCATION
We consider variable splitting:

v ∈ Var(P) is split into ⟨v1, v2⟩ such that
v1 = f1(v), v2 = f2(v) and v = g(v1, v2)

f1(v) = v ÷ 10

f2(v) = v mod 10

g(v1, v2) = 10 · v1 + v2

And the interval analysis: ι(x) = [min(x),max(x)]

τ(P) :

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1 = 0;

v2 = 0;

while 10 · v1 + v2 < N {

v1 = v1 + (v2 + 1)÷ 10

v2 = (v2 + 1) mod 10

};

c : v = 10 · v1 + v2

!τ(P); c"ι =

λv . 10⊙ [0, N⊖[0,9]
10 ]⊕ [0, 9] =

λv . [0,N ]⊕ [0, 9] =

λv . [0,N+9]

Obfuscation induces errors

c⃝Giaco – Rennes 2012 – p.35/63

Interval Attack



ⓒ Giacobazzi

Interval Attack
Dynamic Obfuscation

Loc

N input

output

$str

$str

N N+1N N+1

[[P ]]

[[P ]]int

Figure 1. Relation between dynamic code generation and analysis.

negatives [64]. There are no effective general purpose sound static
analysers for self-modifying code. A huge effort was devoted in-
stead to bring static types to object-oriented dynamic languages
(e.g., see [2] for a recent account in Ruby) but with a different per-
spective: Bring into dynamic languages the benefits of static ones.
Our approach is different and complementary: We want to bring
into static analysis the possibility of handling dynamically mutat-
ing code structures. Consider the following dynamically obfuscated
PHP program P . For any natural number N , P outputs the sum in
$w of the first N numbers, i.e., P implements �N. (N

2
+ N)/2,

by building, in a string variable $str, a program as a sequence of
N while-loops (loc from 4 to 6), each one computing a number
between 1 and N .

<?php
1: $w = 0; $n=1;
2: while ($n<=N) {
3: $z = rand(2, 10);
4: $str = ’$x=0;$y=0;
5: while (’.$z.’*$x+$y+1<=’.$n.’) {
6: $x=intval((’.$z.’*$x+$y+1)/’.$z.’);
7: $y=($y+1)%’.$z.’;};
8: $w=$w+’.$z.’*$x+$y;’. $str; ++$n;};
9: eval($str.’;’); echo $w. "\n";

?>

The n-th loop in $str, with n < N , instead of counting from 1 to
n it decomposes the numbers from 1 to n into quotient and modulo
with respect to a random number $z, therefore implementing a
simple dynamic data-obfuscation [29]: w 7! hx, yi such that x =

w ÷ z, y = w mod z, and w = zx + y. As observed in [34],
this obfuscation makes interval analysis int = {[a, b] | a 
b 2 Z [ {+1,�1}} increasingly imprecise as n grows. This
because the non-relational analysis of intervals of each while-loop
is unable to bridge the intervals independently obtained for $x

and $y, therefore generating at the end of the n-th while-loop in
$str for $z ⇤ $x+ $y, instead of [n, n], a sound approximation
[n, n+ 9]. Therefore the interval analysis of the output variable $w
produces the interval [(N2

+N)/2, (N

2
+19N)/2] with an error

which grows as N grows. Figure 1 shows the relation between the
loc-size of the dynamically created code in $str and the abstract
interval semantics of P .

Our Solution. The challenge is to extract a sound representation
of all possible code fragments dynamically generated and use this
representation for statically analysing programs employing reflec-
tion. We develop an abstract interpretation based model for the
analysis of imperative dynamic languages with reflection. The idea
is to consider the program, as well as its computed state, as a muta-
ble structure. This requires the design of adequate abstract domains
which combine string analysis with the intended program analysis
concerning the store variables. The first is intended to extract the
(invariant) structure of the code mutation at a given program point,
e.g., when reflection is invoked. The second instead is intended to
extract the property of the computed store concerning the variables
of interest of our analysis, as usual in abstract interpretation.

As semantic model we specialise the notion of phase semantics,
introduced in [20, 21] for the static extraction of code signatures
from x86 metamorphic malware, to the case of dynamic script
languages. The phase semantics is a partition of possible execution
traces of a self-modifying program into phases, each collecting the
computations not yet affecting the code structure and performed
by a particular code variant of the source program. Each phase
represents a code snapshot, while the sequence of states within a
given phase represents the behaviour of that particular snapshot.
In malware detection the extraction of properties of code changes
provides a metamorphic signature i.e., an approximation of the
properties of code evolution. In high-level dynamic programming
languages we are not interested in generating signatures but rather
to statically extract a description of all possible code mutations in
order to make the analysis insensitive to dynamic code mutation.

The analysis of code mutation is performed by abstract inter-
pretation of string operations on an abstract domain of approximate
programs. This domain is specified as the domain of (abstract) sym-
bolic finite automata equipped with operations specified as sym-
bolic transducers. Symbolic finite automata (SFA), introduced in
[23, 58], allow the specification of regular languages over an infi-
nite alphabet, such as the alphabet of instructions of a programming
language. Abstraction [22] is necessary here in order to represent,
by a single abstract symbolic finite automaton, the potentially infi-
nite dynamic behaviour of strings as built at run-time and used as
executable code.

Standard program analysis and string analysis by abstract SFA
are therefore made in parallel. Whenever reflection is invoked, the
abstract interpreter extracts an approximate program from the re-
sult of the string analysis and activates itself on the extracted code.
For code extraction we mean the synthesis of program fragments
that fit the specification generated by the abstract interpreter. For
approximate program we mean a piece of code whose semantics
contains the semantics of the code that is dynamically generated at
run-time. The result is a tower of abstract interpreters that mimics
in abstract interpretation a classical semantic model and implemen-
tation of reflection and reification as introduced in Smith [56], see
[24, 61] for details.

The static approximation of the dynamic code evolution may
of course inject false alarms in the resulting analysis due to the
presence of spurious code instructions, i.e., instructions that are not
dynamically generated by the program but are the result of its static
approximation. This is indeed precisely what happens in any suc-
cessful dynamic program obfuscation, as in the case of program P

above, where obfuscation means here making an analysis impre-
cise (cf. [34]). This phenomenon is rooted into the deep interplay
between program structures and their abstract interpretation [13],
which is precisely captured by the notion of completeness [38].
Completeness holds when the approximation of the semantics of
the program (or of some of its fragments) does not loose preci-
sion when acting on approximate data. A change in the program,
even by semantics-preserving transformations, may induce a loss
of completeness/precision in the abstract interpretation. This may
happen due to code self-modification or due to a poor approxima-
tion of code mutation, including spurious mutations which are not
computed at run-time. The possibility of increasing or reducing the
precision of an abstract interpretation by acting on code has been
recently investigated in the context of program analysis [36, 47],
code obfuscation [19, 34, 35], and in software watermarking [17].

We introduce the notion of sound and complete transduction of
a SFA. If a SFA A is the abstraction of a language L , e.g., the code
that is dynamically built by the program, then completeness holds
in transduction when the approximation of a transduction of A is
equivalent to the approximation of a transduction of L . We prove
that a similar characterisation of completeness as the one proved
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is to consider the program, as well as its computed state, as a muta-
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which combine string analysis with the intended program analysis
concerning the store variables. The first is intended to extract the
(invariant) structure of the code mutation at a given program point,
e.g., when reflection is invoked. The second instead is intended to
extract the property of the computed store concerning the variables
of interest of our analysis, as usual in abstract interpretation.
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of completeness/precision in the abstract interpretation. This may
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precision of an abstract interpretation by acting on code has been
recently investigated in the context of program analysis [36, 47],
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negatives [64]. There are no effective general purpose sound static
analysers for self-modifying code. A huge effort was devoted in-
stead to bring static types to object-oriented dynamic languages
(e.g., see [2] for a recent account in Ruby) but with a different per-
spective: Bring into dynamic languages the benefits of static ones.
Our approach is different and complementary: We want to bring
into static analysis the possibility of handling dynamically mutat-
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PHP program P . For any natural number N , P outputs the sum in
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by building, in a string variable $str, a program as a sequence of
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The n-th loop in $str, with n < N , instead of counting from 1 to
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with respect to a random number $z, therefore implementing a
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Our Solution. The challenge is to extract a sound representation
of all possible code fragments dynamically generated and use this
representation for statically analysing programs employing reflec-
tion. We develop an abstract interpretation based model for the
analysis of imperative dynamic languages with reflection. The idea
is to consider the program, as well as its computed state, as a muta-
ble structure. This requires the design of adequate abstract domains
which combine string analysis with the intended program analysis
concerning the store variables. The first is intended to extract the
(invariant) structure of the code mutation at a given program point,
e.g., when reflection is invoked. The second instead is intended to
extract the property of the computed store concerning the variables
of interest of our analysis, as usual in abstract interpretation.

As semantic model we specialise the notion of phase semantics,
introduced in [20, 21] for the static extraction of code signatures
from x86 metamorphic malware, to the case of dynamic script
languages. The phase semantics is a partition of possible execution
traces of a self-modifying program into phases, each collecting the
computations not yet affecting the code structure and performed
by a particular code variant of the source program. Each phase
represents a code snapshot, while the sequence of states within a
given phase represents the behaviour of that particular snapshot.
In malware detection the extraction of properties of code changes
provides a metamorphic signature i.e., an approximation of the
properties of code evolution. In high-level dynamic programming
languages we are not interested in generating signatures but rather
to statically extract a description of all possible code mutations in
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bolic finite automata equipped with operations specified as sym-
bolic transducers. Symbolic finite automata (SFA), introduced in
[23, 58], allow the specification of regular languages over an infi-
nite alphabet, such as the alphabet of instructions of a programming
language. Abstraction [22] is necessary here in order to represent,
by a single abstract symbolic finite automaton, the potentially infi-
nite dynamic behaviour of strings as built at run-time and used as
executable code.

Standard program analysis and string analysis by abstract SFA
are therefore made in parallel. Whenever reflection is invoked, the
abstract interpreter extracts an approximate program from the re-
sult of the string analysis and activates itself on the extracted code.
For code extraction we mean the synthesis of program fragments
that fit the specification generated by the abstract interpreter. For
approximate program we mean a piece of code whose semantics
contains the semantics of the code that is dynamically generated at
run-time. The result is a tower of abstract interpreters that mimics
in abstract interpretation a classical semantic model and implemen-
tation of reflection and reification as introduced in Smith [56], see
[24, 61] for details.

The static approximation of the dynamic code evolution may
of course inject false alarms in the resulting analysis due to the
presence of spurious code instructions, i.e., instructions that are not
dynamically generated by the program but are the result of its static
approximation. This is indeed precisely what happens in any suc-
cessful dynamic program obfuscation, as in the case of program P

above, where obfuscation means here making an analysis impre-
cise (cf. [34]). This phenomenon is rooted into the deep interplay
between program structures and their abstract interpretation [13],
which is precisely captured by the notion of completeness [38].
Completeness holds when the approximation of the semantics of
the program (or of some of its fragments) does not loose preci-
sion when acting on approximate data. A change in the program,
even by semantics-preserving transformations, may induce a loss
of completeness/precision in the abstract interpretation. This may
happen due to code self-modification or due to a poor approxima-
tion of code mutation, including spurious mutations which are not
computed at run-time. The possibility of increasing or reducing the
precision of an abstract interpretation by acting on code has been
recently investigated in the context of program analysis [36, 47],
code obfuscation [19, 34, 35], and in software watermarking [17].

We introduce the notion of sound and complete transduction of
a SFA. If a SFA A is the abstraction of a language L , e.g., the code
that is dynamically built by the program, then completeness holds
in transduction when the approximation of a transduction of A is
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CODE FLATTENING
[Cloackware 2000]

Idea: “scramble” or “distort” the control flow of input program P, without
changing its whole-program semantics

c⃝Giaco – Rennes 2012 – p.46/63

Code Flattening

Obf↵(P ) = [[spec]](interp, P )
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Code Flattening

Obf↵(P ) = [[spec]](interp, P )

int modexp(int y,int x[],
int w,int n) {

int R, L;
int k = 0;
int s = 1;
while (k < w) {

if (x[k] == 1)
R = (s*y) % n;

else
R = s;

s = R*R % n;
L = R;
k++;

}
return L;

}

if (k<w)

if (x[k]==1) 

s=R*R mod n
L = R

k++

R=sR=(s*y) mod n

s=1

k=0

return L

B6 :

B1 :

B2 :

B5 :

goto B1

B4 :B3 :

B0 :
int modexp(int y, int x[], int w, int n) {

int R, L, k, s;
int next =0;
for (;;)

switch(next) {
case 0 : k=0; s=1; next =1; break;
case 1 : if (k<w) next =2; else next =6; break;
case 2 : if (x[k]==1) next =3; else next =4; break;
case 3 : R=(s*y)%n; next =5; break;
case 4 : R=s; next =5; break;
case 5 : s=R*R%n; L=R; k++; next =1; break;
case 6 : return L;

}
}

if (k<w)

else

next=2

next=6

if (x[k]==1)

else

next=1l

next=4

next=5

R=(s*y)%n R=s

next=5

S=R*R%n

L=R

K++

next=1

return Lk=0
s=1

next=1

next=0

switch(next)

B2 B5

B6

B0

B1

B3 B4

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?

The for loop incurs one jump,the switch statement a bounds
check on the next variable and an indirect jump through a
jump table.

Keep tight loops as one switch entry.

Use gcc’s labels-as-values to construct a jump table that lets
you jump directly to the next basic block.

88 / 210
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EXAMPLE OF FLATTENING
The following flattened program P ′ has
➪

only one loop (regardless of how many loops P has), and

➪
an explicit program counter pc

Original program P: Flattened equivalent program P ′:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x − 1

endw
6.output y ;
7.end

1.input x ; 2.pc := 2;
3.while pc < 6 do

4.case pc of
2 : 5.y := 2; 6.pc := 3;

3 : 7.if x > 0 then 8.pc := 4 else 9.pc := 6;

4 : 10.y := y + 2; 11.pc := 5;

5 : 12.x := x − 1; 13.pc := 3;

endw
14.output y
15.end

c⃝Giaco – Grenoble 2012 – p.44/59

Code Flattening

Obf↵(P ) = [[spec]](interp, P )
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STRUCTURE OF A SIMPLE SELF-INTERPRETER

input P, d ; Program to be interpreted, and its data
pc := 2; Initialise program counter and store
store := [in !→ d , out !→ 0, x1 !→ 0, . . .];

while pc < length(P) do
instruction := lookup(P, pc); Find the pc-th instruction
case instruction of Dispatch on syntax
skip : pc := pc + 1;

x := e : store := store[x !→ eval(e, store)]; pc := pc + 1;

. . . endw ;

output store[out ];
eval(e, store) = case e of Function to evaluate expressions

constant : e

variable : store(e)

e1+ e2 : eval(e1, store) + eval(e2, store)
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EXAMPLE OF FLATTENING
The following flattened program P ′ has
➪

only one loop (regardless of how many loops P has), and

➪
an explicit program counter pc

Original program P: Flattened equivalent program P ′:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x − 1

endw
6.output y ;
7.end

1.input x ; 2.pc := 2;
3.while pc < 6 do

4.case pc of
2 : 5.y := 2; 6.pc := 3;

3 : 7.if x > 0 then 8.pc := 4 else 9.pc := 6;

4 : 10.y := y + 2; 11.pc := 5;

5 : 12.x := x − 1; 13.pc := 3;

endw
14.output y
15.end
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STRUCTURE OF A SIMPLE SELF-INTERPRETER
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pc dynamic!

The right self-Interpreter
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Why?

Obf↵(P ) = [[spec]](interp, P )



ⓒ Giacobazzi

13

5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to
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label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to
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The CFG Abstraction

Obf↵(P ) = [[spec]](interp, P )



ⓒ Giacobazzi

13

5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to
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The CFG Abstraction

Obf↵(P ) = [[spec]](interp, P )
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THE CFG ABSTRACTION

➪
The attacker is an abstract interpreter extracting the CFG from P

✔ forgets the computed memoryM: C = λσ. M

✔ forgets the branch computation when involving the pc: η
✔ Fixpoint Graph semantics: !P"G = lfp(GP)

➪
Theorem

C(!P"G) = !P"C,η
G

iff pc is not a program variable

Flattening is distorting an interpreter making an abstract interpreter extracting
the CFG incomplete

c⃝Giaco – Grenoble 2012 – p.48/59

Completeness!!

pc dynamic!

The CFG Abstraction

Obf↵(P ) = [[spec]](interp, P )

Static CFG extraction
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III: Slicing

Obf↵(P ) = [[spec]](interp, P )
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For a variable v and a statement (program point) s (final use of v), the slice S 
of program P with respect to the slicing criterion ⟨s,v⟩ is any executable 
program such that S can be obtained by deleting zero or more 
statements from P and if P halts on input I then the value of v at the 
statement s, each time is reached in P, is the same in P and in S.
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

13

5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
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texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0
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Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Program Slicing
M. Weiser 1981

Obf↵(P ) = [[spec]](interp, P )

Program 
Dependency Graph



ⓒ Giacobazzi

original() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) nl ++;  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):


Data Dependency Obfuscation

Obf↵(P ) = [[spec]](interp, P )
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original() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) nl ++;  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):

Slicing criterion: nl

Data Dependency Obfuscation

Obf↵(P ) = [[spec]](interp, P )



ⓒ Giacobazzi

original() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) nl ++;  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):

Slicing criterion: nw

Data Dependency Obfuscation

Obf↵(P ) = [[spec]](interp, P )
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obfuscated() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) {if (nw <= nc) nl ++; } 
if (nl > nc) nw = nc + nl; 
else {if (nw > nc) nc = nw − nl; }  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):


Data Dependency Obfuscation

Obf↵(P ) = [[spec]](interp, P )
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obfuscated() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) {if (nw <= nc) nl ++; } 
if (nl > nc) nw = nc + nl; 
else {if (nw > nc) nc = nw − nl; }  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):


Always true

Always false

Data Dependency Obfuscation

Obf↵(P ) = [[spec]](interp, P )
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obfuscated() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) {if (nw <= nc) nl ++; } 
if (nl > nc) nw = nc + nl; 
else {if (nw > nc) nc = nw − nl; }  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):

Slicing criterion: nl

Data Dependency Obfuscation

Obf↵(P ) = [[spec]](interp, P )
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obfuscated() { 
int c, nl = 0, nw = 0, nc =0, in; 
in = F; 
while ((c = getchar()) ! = EOF) { 

nc ++; 
if (c == ‘ ’ || c == ‘\n’ || c == ‘\t’) in = F; 
else if (in == F) {in = T; nw ++; } 
if (c == ‘\n’) {if (nw <= nc) nl ++; } 
if (nl > nc) nw = nc + nl; 
else {if (nw > nc) nc = nw − nl; }  
} 

out(nl, nw, nc); }

Word Count program 
which takes a block of text and outputs the number of


lines (nl), words (nw) and characters (nc):

Slicing criterion: nw

Data Dependency Obfuscation

Obf↵(P ) = [[spec]](interp, P )



ⓒ Giacobazzi

Opaque Predicates
Opaque predicates

Examples of opaque predicates from number theory

∀x , y ∈ Z : 7y2 − 1 ̸= x2

∀x ∈ Z : 2 | (x + x2)

∀x ∈ Z : 3 | (x3 − x )

∀n ∈ Z+, x , y ∈ Z : (x − y) | (xn − yn )

∀n ∈ Z+, x , y ∈ Z : 2 | n ∨ (x + y) | (xn + yn )

∀n ∈ Z+, x , y ∈ Z : 2 ̸ | n ∨ (x + y) | (xn − yn )

∀x ∈ Z+ : 9 | (10x + 3 · 4(x+2) + 5)

∀x ∈ Z : 3 | (7x − 5) ⇒ 9 | (28x2 − 13x − 5)

∀x ∈ Z : 5 | (2x − 1) ⇒ 25 | (14x2 − 19x − 19)

∀x , y , z ∈ Z : (2 ̸ | x ∧ 2 ̸ | y) ⇒ x2 + y2 ̸= z2

∀x ∈ Z+ : 14 | (3 · 74x+2 + 5 · 42x−1 − 5)

Ingegneria e Scienze Informatiche – Verona – p.37/74
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

2

�00 = R+(�0) = R+(�a)

D2 = [Dx = 1,Di = 2] s = �⇥, �2, 3⇥⇥

Obf↵(P ) = [[spec]](interp, P )

The PDG Abstraction



ⓒ Giacobazzi

13

5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .
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from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to
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5.1 Program slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v ), the slice S of program P with respect to the slicing
criterion ⇤s, v⌅ is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .

The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u �⇥f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion ⇤s, v⌅ is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].

Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u �⇥c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u �⇥f v ) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

�

⇥
1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

�

⇥
x := 0 ;
w := 1 ;
y := x ;

P3

�

⇥
1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.

5.2 Semantic PDG as abstraction of program semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

Entry

1 2 3 4

3a

2

�00 = R+(�0) = R+(�a)

D4 = [Dx = 1,Di = 2,Dy = 4] s1 = ⇥⇥, ⇥3, 3a⇤⇤ and s2 = ⇥⇥, ⇥4,�⇤⇤

Obf↵(P ) = [[spec]](interp, P )

The PDG Abstraction
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Theorem

The Semantic PDG is complete (i.e., the PDG analysis is precise) iff the 
program does not contain fake dependencies

Slicing Obfuscation

Obf↵(P ) = [[spec]](interp, P )

M1 . . . Mn

True dependencies

Syntactic PDG
Entry

1 2 3 4

3a

P
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Entry

1 2 3 4

3a
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Theorem

The Semantic PDG is complete (i.e., the PDG analysis is precise) iff the 
program does not contain fake dependencies

Slicing Obfuscation

Obf↵(P ) = [[spec]](interp, P )

Entry
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Conclusions

MY CLAIM!

➪
Any obfuscation technique is an instance of

!spec"(interp+,P)

for some interp+ making an abstraction α incomplete!

➪
Given an obfuscated code P, what is α?

➪
Given α, can we derive interp+ systematically?

c⃝Giaco – Rennes 2012 – p.55/63
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MY CLAIM!

➪
Any obfuscation technique is an instance of

!spec"(interp+,P)

for some interp+ making an abstraction α incomplete!

➪
Given an obfuscated code P, what is α?

➪
Given α, can we derive interp+ systematically?

c⃝Giaco – Rennes 2012 – p.55/63

So what?

?

+ !

MY CLAIM!

➪
Any obfuscation technique is an instance of

!spec"(interp+,P)

for some interp+ making an abstraction α incomplete!

➪
Given an obfuscated code P, what is α?

➪
Given α, can we derive interp+ systematically?

c⃝Giaco – Rennes 2012 – p.55/63

↵EXPOLITING INCOMPLETENESS

Maximize !P"ρ incompleteness!

➪
The abstraction is the specification of the attacker

✔ Profiling: Abstract memory keeping only (partial) resource usage
✔ Tracing: Abstraction of traces (e.g., by trace compression)
✔ Slicing: Abstraction of traces (relative to variables)
✔ Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
✔ Decompilation: Abstracts syntactic structures (e.g., reducible loops)
✔ Disassembly: Abstracts binary structures (e.g., recursive traversal)

➪
Each abstraction is incomplete for a concrete enough trace semantics

➪
Maximize incompleteness by code transformation: Obfuscation

➪
Exploit incompleteness for hiding information: Steganography

c⃝Giaco – Rennes 2012 – p.36/63

Obf↵(P ) = [[spec]](interp, P )

↵

↵
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The Challenges

• Correctness: a provably correct obfuscation? 
• Is obscured code still secure? 
• Adaptable interpreters and specialisers for 

dynamic obfuscation? 
• Measures of behaviour leakage ? 
• Automated Machine Learning reverse 

engineering as attack models?
META-LEVEL DISCUSSION

The Futamura projections are as follow for a distorted interpreter interp+:

1. P ′ := !spec"(interp+,P) Transform program
2. comp := !spec"(spec,interp+) Generate transformer
3. cogen := !spec"(spec,spec) Transformer generator

We have just seen instances of the 1st Futamura projection.

If the set of incomplete program structures is Turing complete: Write the
distorted interpreter as incomplete structures

If you want to act locally: use interference to ensure that incompleteness is
propagated

An obfuscating compiler can also be generated, by the 2nd Futamura
projection; this has been done using the UNMIX partial evaluator.

For example, if P is interpflat, then compiler is a stand-alone obfuscator:
a “flattening” program transformer.

c⃝Giaco – Rennes 2012 – p.53/63

MY CLAIM!

➪
Any obfuscation technique is an instance of

!spec"(interp+,P)

for some interp+ making an abstraction α incomplete!

➪
Given an obfuscated code P, what is α?

➪
Given α, can we derive interp+ systematically?

c⃝Giaco – Rennes 2012 – p.55/63

↵

↵
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The Challenges

MY CLAIM!

➪
Any obfuscation technique is an instance of

!spec"(interp+,P)

for some interp+ making an abstraction α incomplete!

➪
Given an obfuscated code P, what is α?

➪
Given α, can we derive interp+ systematically?

c⃝Giaco – Rennes 2012 – p.55/63

Intentional and extensional aspects of computation: 

From computability and complexity to program analysis and security

Shonan Village Center, Japan 

January 22-25, 2018
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Thanks!

Francesco Francesco

NeilIsabella Mila &

Obfuscation & Security Completeness

Sandrine

Roberta Roberto
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The InterProc Analyser

Experiments

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
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Analysis Result
Run interprocweb or interprocwebf ?

Result
Annotated program after forward analysis
proc MC (n : int) returns (r : int) var t1 : int, t2 : int;
begin
  /* (L5 C5) top */
  if n > 100 then
     /* (L6 C17) [|n-101>=0|] */
     r = n - 10; /* (L7 C14)
                    [|n-101>=0; r-91>=0|] */
  else
    /* (L8 C6) [|-n+100>=0|] */
    t1 = n + 11; /* (L9 C17)
                    [|-n+100>=0; -t1+111>=0|] */
    t2 = MC(t1); /* (L10 C17)
                    [|-n+100>=0; -t1+111>=0; t2-91>=0|] */
    r = MC(t2); /* (L11 C16)
                   [|-n+100>=0; r-91>=0; -t1+111>=0; t2-91>=0|] */
  endif; /* (L12 C8) [|r-91>=0|] */
end

var a : int, b : int;
begin
  /* (L17 C5) top */
  b = MC(a); /* (L18 C12) [|b-91>=0|] */
end

Source
/* exact semantics:
   if (n>=101) then n-10 else 91 */
proc MC(n:int) returns (r:int)
var t1:int, t2:int;
begin
  if (n>100) then
     r = n-10;
  else 
     t1 = n + 11;
     t2 = MC(t1);
     r = MC(t2);
  endif;
end

var
a:int, b:int;
begin
  b = MC(a);
end

Run interprocweb or interprocwebf ?

Example

Nested recursive function by  
John McCarthy!

M(n) =

⇢
n� 10 if n > 100
M(M(n+ 11)) if n  100
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Analysis Result
Run interprocweb or interprocwebf ?

Result
Annotated program after forward analysis
proc MC (n : int) returns (r : int) var t1 : int, t2 : int;
begin
  /* (L5 C5) top */
  if n > 100 then
     /* (L6 C17) [|n-101>=0|] */
     r = n - 10; /* (L7 C14)
                    [|n-101>=0; r-91>=0|] */
  else
    /* (L8 C6) [|-n+100>=0|] */
    t1 = n + 11; /* (L9 C17)
                    [|-n+100>=0; -t1+111>=0|] */
    t2 = MC(t1); /* (L10 C17)
                    [|-n+100>=0; -t1+111>=0; t2-91>=0|] */
    r = MC(t2); /* (L11 C16)
                   [|-n+100>=0; r-91>=0; -t1+111>=0; t2-91>=0|] */
  endif; /* (L12 C8) [|r-91>=0|] */
end

var a : int, b : int;
begin
  /* (L17 C5) top */
  b = MC(a); /* (L18 C12) [|b-91>=0|] */
end

Source
/* exact semantics:
   if (n>=101) then n-10 else 91 */
proc MC(n:int) returns (r:int)
var t1:int, t2:int;
begin
  if (n>100) then
     r = n-10;
  else 
     t1 = n + 11;
     t2 = MC(t1);
     r = MC(t2);
  endif;
end

var
a:int, b:int;
begin
  b = MC(a);
end

Run interprocweb or interprocwebf ?

!!

Example



ⓒ Giacobazzi

Obfuscation

Annotated program after forward analysis
var i : int;
begin
  /* (L2 C5) top */
  i = 0; /* (L3 C8) [|i>=0; -i+201>=0|] */
  while i <= 200 do
    /* (L4 C19) [|i>=0; -i+200>=0|] */
    i = i + 1; /* (L5 C12)
                  [|i-1>=0; -i+201>=0|] */
  done; /* (L6 C7) [|i-201=0|] */
end

var i:int;
begin
  i = 0;
  while (i<=200) do
    i = i+1;
  done;
end

var i:int, j:int;
begin
  i = 0;
  j = 0;
  while ((10*i+j)<=200) do
    i = i+(j+1) /_i,0 10 ;
    j = (j + 1) % 10;
  done;
i = 10*i+j;
end

Annotated program after forward analysis
var i : int, j : int;
begin
  /* (L2 C5) top */
  i = 0; /* (L3 C8) [|i=0|] */
  j = 0; /* (L4 C8)
            [|i>=0; -i+21>=0; j>=0; -j+10>=0|] */
  while 10 * i + j <= 200 do
    /* (L5 C26)
       [|i>=0; -i+20>=0; j>=0; -j+10>=0|] */
    i = i + (j + 1) /_i,0 10; /* (L6 C26)
                                 [|i>=0; -i+21>=0; j>=0; -j+10>=0|] */
    j = (j + 1) % 10; /* (L7 C21)
                         [|i>=0; -i+21>=0; j>=0; -j+10>=0|] */
  done; /* (L8 C7)
           [|i-20>=0; -i+21>=0; j>=0; -j+10>=0|] */
  i = 10 * i + j; /* (L9 C11)
                     [|i-200>=0; -i+220>=0; j>=0; -j+10>=0|] */
end

Source

Result

Obscure!
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Annotated program after forward analysis
var i : int, j : int;
begin
  /* (L2 C5) top */
  i = 0; /* (L3 C8) [|i=0|] */
  j = 0; /* (L3 C13) [|i>=0; j>=0; -j+11>=0|] */
  while j <= 10 do
    /* (L4 C18) [|i>=0; j>=0; -j+10>=0|] */
    i = i + 1; /* (L5 C11)
                  [|i-1>=0; j>=0; -j+10>=0|] */
    j = j + 1; /* (L6 C12)
                  [|i-1>=0; j-1>=0; -j+11>=0|] */
  done; /* (L7 C7) [|i>=0; j-11=0|] */
end

Obfuscation

var i:int;
begin
  i = 0;
  while (i<=10) do
    i = i+1;
  done;
end

Source

Result

var i:int, j:int;
begin
  i = 0; j=0;
  while (j<=10) do
    i =i+1;
    j =j+1;
  done;
end

Annotated program after forward analysis
var i : int;
begin
  /* (L2 C5) top */
  i = 0; /* (L3 C8) [|i>=0; -i+11>=0|] */
  while i <= 10 do
    /* (L4 C18) [|i>=0; -i+10>=0|] */
    i = i + 1; /* (L5 C12)
                  [|i-1>=0; -i+11>=0|] */
  done; /* (L6 C7) [|i-11=0|] */
end

Obscure!
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With Octagons

var i:int;
begin
  i = 0;
  while (i<=10) do
    i = i+1;
  done;
end

Source

Result

var i:int, j:int;
begin
  i = 0; j=0;
  while (j<=10) do
    i =i+1;
    j =j+1;
  done;
end

Annotated program after forward analysis
var i : int, j : int;
begin
  /* (L2 C5) top */
  i = 0; /* (L3 C8) [|i>=0; -i>=0|] */
  j = 0; /* (L3 C13)
            [|i>=0; -i+11>=0; -i+j>=0; i+j>=0; j>=0; -i-j+22>=0; i-j>=0;
              -j+11>=0|] */
  while j <= 10 do
    /* (L4 C18)
       [|i>=0; -i+10>=0; -i+j>=0; i+j>=0; j>=0; -i-j+20>=0; i-j>=0; -j+10>=0|] */
    i = i + 1; /* (L5 C11)
                  [|i-1>=0; -i+11>=0; -i+j+1>=0; i+j-1>=0; j>=0; -i-j+21>=0;
                    i-j-1>=0; -j+10>=0|] */
    j = j + 1; /* (L6 C12)
                  [|i-1>=0; -i+11>=0; -i+j>=0; i+j-2>=0; j-1>=0; -i-j+22>=0;
                    i-j>=0; -j+11>=0|] */
  done; /* (L7 C7)
           [|i-11>=0; -i+11>=0; -i+j>=0; i+j-22>=0; j-11>=0; -i-j+22>=0;
             i-j>=0; -j+11>=0|] */
end

Annotated program after forward analysis
var i : int;
begin
  /* (L2 C5) top */
  i = 0; /* (L3 C8) [|i>=0; -i+11>=0|] */
  while i <= 10 do
    /* (L4 C18) [|i>=0; -i+10>=0|] */
    i = i + 1; /* (L5 C12)
                  [|i-1>=0; -i+11>=0|] */
  done; /* (L6 C7) [|i-11>=0; -i+11>=0|] */
end
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http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Let us play!!!

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
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Obfuscation on Linear Relations
Source

Result

?
proc incr (x:int) returns (y:int)
begin
  y = x+1;
end

var i:int;
begin
  i = 0;
  while (i<=10) do
    i = incr(i);
  done;
end

Annotated program after forward analysis
proc incr (x : int) returns (y : int) var ;
begin
  /* (L3 C5) top */
  y = x + 1; /* (L4 C10) [|-x+y-1=0|] */
end

var i : int;
begin
  /* (L8 C5) top */
  i = 0; /* (L9 C8) top */
  while i <= 10 do
    /* (L10 C18) top */
    i = incr(i); /* (L11 C16) top */
  done; /* (L12 C7) top */
end
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Obfuscation on Octagons

var i:int;
begin
  i = 0;
  while (i<=10) do
    i = i+1;
  done;
end

Source

Result

var i:int, j:int;
begin
  i = 0;j=1;
  while (j<=1024) do
    j = j*2;
    i = i+1;
  done;
end

Annotated program after forward analysis
var i : int, j : int;
begin
  /* (L2 C5) top */
  i = 0; /* (L3 C8) [|i>=0; -i>=0|] */
  j = 1; /* (L3 C12)
            [|i>=0; -i+1024>=0; -i+j-1>=0; i+j-1>=0; j-1>=0; -i-j+3072>=0;
              i-j+2047>=0; -j+2048>=0|] */
  while j <= 1024 do
    /* (L4 C20)
       [|i>=0; -i+1023>=0; -i+j-1>=0; i+j-1>=0; j-1>=0; -i-j+2047>=0;
         i-j+1024>=0; -j+1024>=0|] */
    j = j * 2; /* (L5 C12)
                  [|i>=0; -i+1023>=0; -i+j-2>=0; i+j-2>=0; j-2>=0;
                    -i-j+3071>=0; i-j+2048>=0; -j+2048>=0|] */
    i = i + 1; /* (L6 C12)
                  [|i-1>=0; -i+1024>=0; -i+j-1>=0; i+j-3>=0; j-2>=0;
                    -i-j+3072>=0; i-j+2047>=0; -j+2048>=0|] */
  done; /* (L7 C7)
           [|i>=0; -i+1024>=0; -i+j-1>=0; i+j-1025>=0; j-1025>=0;
             -i-j+3072>=0; i-j+2047>=0; -j+2048>=0|] */
end
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Hacking McCarthy 91

Source

?
proc MC(n:int) returns (r:int)
var t1:int, t2:int;
begin
  if (n>100) then
     r = n-10;
  else 
     t1 = n + 11;
     t2 = MC(t1);
     r = MC(t2);
  endif;
end

var
a:int, b:int;
begin
  b = MC(a);
end
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Hacking McCarthy 91

Source

proc MC(n:int) returns (r:int)
var t1:int, t2:int;
begin
  if (n>100) then
     r = n-10;
  else 
     t1 = n + 11;
     t2 = MC(t1);
     r = MC(t2);
  endif;
end

var
a:int, b:int;
begin
  b = MC(a);
end

Try it!!!

proc MC(n:int) returns (r:int)
var t1:int, t2:int, p:int;
begin
  p = n*2;
  if (p>200) then
     r = (p-20)/2;
  else 
     if (n*(n-1))%2==0 then
        t1 = (p + 22)/2;
        t2 = MC(t1);
        r = MC(t2);
     else
        r=50;
     endif;
  endif;
end

var
a:int, b:int;
begin
  b = MC(a);
end

See More from Vivek Notani

x-redundant-cluster-toggle://0
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Hacking McCarthy 91

Source

proc MC(n:int) returns (r:int)
var t1:int, t2:int;
begin
  if (n>100) then
     r = n-10;
  else 
     t1 = n + 11;
     t2 = MC(t1);
     r = MC(t2);
  endif;
end

var
a:int, b:int;
begin
  b = MC(a);
end

Try it!!!

proc MC(n:int) returns (r:int)
var t1:int, t2:int, p:int;
begin
  p = n*n;
  if (p>10000) then
     r = (p/n-10);
  else 
     t1 = (p + 11*n)/n;
     t2 = MC(t1);
     r = MC(t2);
  endif;
end

var
a:int, b:int;
begin
  b = MC(a);
end
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Why this works?

apply to this widening as well. This has significant impact on
limits of abstract interpretation that depends on this widen-
ing for termination:

1. The noise independent of training data: The inability of
simpler abstract domain to describe the complex invariant
is well known. Researchers address this by switching
to more precise domains. However switching to more
precise domains does not necessarily result in stronger
invariant [13]. Indeed, Sharma et. al. have explained this
as a Bias Variance Trade-off [14].

2. Global Nature of Learning: Regression output are con-
tinuous functions and point discontinuity (in the origi-
nal function) in one region may lead to errors all over
the space (Global Nature). This means that discontinuity
in function mapping iterator-count to abstract states will
lead to errors in widening. We analyze the significance of
this in detail in Obfuscation section.

Note however, that the above limitations hold if and only
if the all of the below conditions hold true:

1. Domain has infinite chain condition and uses widening
for termination.

2. Widening used is the template widening described above.

Condition-1 holds for most of the traditional domains in
abstract interpretation literature. Condition-2 appears to be
more restrictive. However, in practice, the implementation
for widening for several domains can be shown to follow our
regression template widening operator, such as: Intervals,
Octagons, and Polyhedra. Given the widespread use of the
listed domains and their widening, the results are significant
for practitioners.
Obfuscation
Consider the program and it’s Interval analysis Interproc An-
alyzer [11] as shown in Figure-1a. Note that the interval
analysis is a successful attack (complete analysis). To ob-
fuscate, we make the computation of i in the loop discontin-
uous. At i = 5, we jump the value by 100 and immediately
after, drop the value back to 5. Figure-1b shows the trans-
formed program and it’s interval analysis using Interproc
Analyzer. Note that the transformation is semantic preserv-
ing and does not induce more than polynomial slowdown.
Figure-1b shows that interval analysis on the transformed
program is incomplete. Thus, we successfully obfuscated the
program by introducing discontinuity in computation. Addi-
tionally, the transformed program is incomplete for octagon
and convex polyhedra domain as well.
Conclusion
Our key result is the duality between supervised machine
learning (Regression) and abstract interpretation (Widen-
ing). Indeed both regression and widening are inductive
learners- they generalize from observations; However, un-
til now they have been studied separately as distinct fields

(a) Complete Analysis

(b) Incomplete Analysis

of study. We hope to change that. Further, we used this rela-
tionship between widening and regression to come up with
a widening operator parametric on the domain. We have
explained program analysis errors and observations via ma-
chine learning limitations. Further, we have exploited known
weakness in regression to design new obfuscation methods
that target all analyzers (attackers) that rely on our widening
operator for termination.

Related Works
Even though design of a widening operator is an integral
step in the design of an abstract interpreter using an infinite
domain, not much work has been done to systematize the
design of widening operator. There is currently no known
algorithm for automatically deriving a widening operator for
any given domain.

Most work on the design of widening operators has been
restricted to specific domains- type graphs [15], ellipsoid do-
main for digital filters [10], etc. However, some work has
been done recently to study the widening operator properties
to support systematic construction of widening [4, 8]. In [1]
authors describe three generic methods to derive widening
for powerset domains by lifting the base-level abstract do-
mains. In [4], authors show how widening operators can
be combined in the cartesian and reduced product of ab-
stract domains. However, all these works provide for deriv-
ing widening of higher level domains by lifting widening of
base-level domains. Our work provides for a way to auto-
matically derive widening of base-level numerical domains.
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