
© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

1

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com
© 2017 Irdeto. All Rights Reserved.

The Industrial Challenges in
Software and Information Protection

Yuan Xiang Gu

Co-Founder of Cloakware

Chief Architect, Irdeto

Guest Professor, Northwest University

The 8th International Summer School on Information Security and Protection

July 17- 21, 2017

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

2

Cloakware Secure Environment – Renewable SecurityAgenda

▪ Myself Briefing

▪ Irdeto Overview

▪ Who are we, what do we do, and where we are evolving

▪ Part 1: Trends in Security Threats

▪ Part 2: New Challenges and White-box Security

▪ New Challenges to Information Security

▪ White-Box Attacks in Real World

▪ Software Security: More Than Vulnerability

▪ Power of Software Protection

▪ Web Application Security Challenges

▪ Connected Application central based Security Model

▪ Software Security Lifecycle and Digital Asset Protection

▪ New View of Information Security and New Research Opportunity

▪ Part 3: White-box Security Patterns

▪ Introduction to WB Computing Security Patterns

▪ WB Computing Security Pattern Description in Details

▪ Summary

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

3

▪ 1975 -1988: Professor of Northwest University in China

▪ 1988 -1990: Visiting professor of McGill University, Canada

▪ 1990 -1997: Senior scientist and architect at Nortel

▪ 1993: Effective Immune Software (EIS, early Cloakware idea)

▪ 1997 - 2007: Co-founder and executive positions of Cloakware

▪ 2007 - present: Chief Architect, Irdeto Canada,

▪ leading security research and collaboration with universities worldwide

▪ 2011 - present: Guest professor of Northwest University, China

Myself Briefing

Where is Irdeto Canada

Ottawa

Canada

It is really

COOL,

COOL,

COOL!!!

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

5

Who are we?

What do we do?

Where we are evolving?

Intro to Irdeto

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

6

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com
3

Irdeto is part of the Naspers Group (NPN.SJ)

Naspers is one of the world’s largest
technology investors

Irdeto is the cybersecurity
unit of the Naspers group

Cloakware is the software security brand
for Irdeto’s IoT offerings

Revenue

US$ 12.2bn

+22% YoY

(+6%)

Profit

US$ 1.2bn

+49% YoY

(+21%)

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

7

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

Presenter Name

Presenter Title

Location

Date

Classification

4

For nearly 50 years, Irdeto has worked with software
application providers, connected device

manufacturers, pay-media operators and content
creators to secure their products and businesses

Now turning to IoT, Irdeto believes that privacy and
protection against cyber criminals is fundamental to

building a healthy and safe digital future

#1 in software security in pay media

+5 billion devices & applications secured

+191 million cryptographic keys generated and under
management

Serving 350 clients worldwide

571 patents & 522 patents pending

+1000 security expert employees

20 locations covering 6 continents

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

8

Days of hacking games and movies

are over…

... Attacking busines is

the new trend!

Part 1: Hacker Trends

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

9

“As the chairman pointed out, there are now

computers in everything. But I want to suggest

another way of thinking about it in that everything is

now a computer: This is not a phone. It’s a computer

that makes phone calls. A refrigerator is a computer

that keeps things cold. ATM machine is a computer

with money inside. Your car is not a mechanical

device with a computer. It’s a computer with four

wheels and an engine… And this is the Internet of

Things, and this is what caused the DDoS attack

we’re talking about.”
– Bruce Schneier

Speaking before Members of US Congress
Nov 2017

“The Internet era of fun and games is over”

10

Smart Office

Smart Home

Smart Building

Smart

Transportation

Smart

Agriculture

Smart

Business

Smart Health

Smart City

Smart

Environment

Smart Earth

Smart Everything: Can Secure Everything?

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

11

IoT – How to Fail at Security

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

12

Philips Hue – Malware

Philips Hue – Malware

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

13

▪ Local attacks

▪ Remote attacks

▪ Personal Data Theft

▪ Software bugs

▪ Architectural defects

Automotive – Becoming a Favorite Target

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

14

2010
2010

2015
2015

2015

2016

2015

2014

2015

2015 2016

Wifi laptop
remote control

2015

OnStar remote
control

Dealer malware
propagation

Remote control through Zubie dongle

BMW unlock

Key fob
replicator

OnStar
unlock / start
takeover Tesla WebKit hack

Jeep hack

Corvette insurance
dongle

Tesla Wifi
and
Android App

Nissan Leaf
mobile app

Automotive Cybersecurity History

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

15

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

Presenter Name

Presenter Title

Location

Date

Classification

Cybercrime has evolved from single hackers into resilient highly skilled

organizations performing global cyber attacks

▪ 38.5% of firms have experienced a cyber attack in the past 12 months
▪ 21% of these attacks had a cost higher than 5 million EUR

(Source: Marsh report September 2016)
16

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

16

Ransomware – Willingness To Harm

Mobile ransomware quadrupled in 2015

Fast becoming a mature, million dollar
business for organized crime

35 known ransomware “products” in
operation in 2015

Targeting corporations and public entities
such as municipal gov’ts and hospitals

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

17

Ransomware in Healthcare

USA top target for
ransomware with
320,000+ infected

systems

Healthcare providers
pay USD $6B annually

to ransomware

Cerber “ransomware-
as-a-service” takes

40% of extorted
profits; run by Russian

crime ring

TeslaCrypt | 777
Xorist | Cerber

GhostCrypt | SamSam
CryptoLocker

MSIL/Samas | Locky

2016
Methodist Hospital

USA

2016
Klinikum Arnsberg

Germany

2016
Lukas Hospital

Germany

2016
Hollywood

Presbyterian
USA

2016
Kansas Heart Hospital

USA

2016
DeKalb Health

USA

2016
Chino Valley Medical

USA

2016
Ottawa Hospital

Canada

Ransomware in Healthcare

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

18

Global Ransomware – WannaCry & Petya

▪ On May 12, 2017: WannaCry attacks
to 300,000 machines in 150 countries
worldwide

▪ On June 27, 2017: Petya attacks in
Europe, the Middle East and the US

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

19

Mirai – Botnet on Steroids

KrebsOnSecurity.com was knocked offline by 620Gbps DDos. One of the biggest
ever recorded. This was followed by a 1Tbps attack against French web host OVH

Botnet of refrigerators? Cars? Traffic Lights? Medical Devices?

Would we even know it was happening?

Indications are that an estimated 500k+ IoT devices such as security
cameras and DVRs were used as a botnet for the attack.

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

20

• More attack vectors
• Increased attacker incentives
• Greater Insider threat
• Device revocation
• Automated attacks

TRENDS

RISKS

✓ Slower market adoption
✓ Financial loss
✓ Brand erosion
✓ Lost shareholder value

EXPOSURE

• Open systems, open source
• More third party applications, developer tools
• Regulatory compliance and third party licenses
• High value assets are now “connected”
• More applications, more access and private user data

Increased Connectivity means Increased Risk – and Different Attack Type

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

21

• Advances in debugging and reverse engineering
techniques have empowered increasingly more
capable and tech-savvy hackers

• Unsecured software is as readable as a book – IP
and critical algorithms are simple for hackers to
access and exploit

• Open source software and hacker collaboration
compound the problem, providing “easy learning”

• Hacking is a business - Hackers make their profit by
scaling and selling modified versions of applications

Problem: All software is vulnerable

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

22

Economics of Security (1/2)

▪ Challenges to design a secure system

▪ The system should be secure but ….

▪ Be usable and easy for users

▪ Be within the computational, memory and power consumption budget
of a device

▪ Have a lifecycle – be manufactured, distributed, used and end of life

▪ Be cost effective – cost significantly less than the asset to be
protected

▪ Fulfill time to market requirements

▪ Remain secure over the life cycle of the system

Economics of Security (1/2)

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

23

Economics of Security (2/2)

▪ Challenges to an attacker

▪ Find a single point of failure of security

▪ Cost of finding and reproducing attack should
be much less than the reward

▪ Depending on attack – reward ranges from
sense of achievement to billions of dollars

▪ The attacker’s job is often much easier
than the designer’s

▪ The designer needs to make a complex system
work all the time without any point of failure

▪ The attacker just needs to find a single flaw as
a start

Economics of Security (2/2)

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

24

Vulnerability Does Always Exist

▪ Vulnerability

A weakness which allows an attacker to develop and launch an attack

▪ Vulnerability can be introduced by different development stages of a
computer system

▪ Requirements flaws

▪ Design and architecture flaws

▪ Infrastructure flaws

▪ Implementation flaws

▪ Integration flaws

▪ Deployment flaws

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

25

Security Vulnerability and Attacks

▪ Attack Surface

The sum of the different points where an attacker
can break a system

▪ Zero Day Vulnerability and Attack

Un-exploited and un-known security holes to
vendors that can be developed into brand new
attacks

▪ A security vulnerability is the intersection of
three elements:

▪ A system susceptibility or flaw

▪ An attacker has access to the flaw

▪ An attackers capability to exploit the flaw

0day

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

26

▪ Architecture Debt

▪ Poor security architecture

▪ Design Debt

▪ Poor security design decision

▪ Implementation Debt

▪ Poor implementation including bad coding

▪ Test Debt

▪ Lack enough security testing and security assurance

Security Debt

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

27

▪ Attack Points:

▪ Device (Receives the most focus)

▪ Smartphone app

▪ Communications and connection points

▪ Other things the device connects to, like

your router, your network, etc

▪ Cloud (via the Internet)

▪ Phases of an attack

▪ Investigation

▪ Leverage a weakness

▪ Peel the onion

▪ Rinse and repeat

▪ Launch an attack

Planning an Attack on an IoT Target

© 2017 Irdeto. All Rights Reserved. – www.irdeto.com

28

Part 2: New Challenges and White-box Security

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

29

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

New Challenges

to Information

Security

Information Security

User

Model

Mobile Connectivity

(including Consumer and

Enterprise Devices)

Computing Paradigm

(including Cloud
Computing and HTML5)

Internet

(including Internet of
Things and Social Network)

On-line Business (anywhere,
anything, anytime, any-device)

Technologic Impacts to Modern Business Model

Challenges to traditional securityTraditional security

31

1960s 1990s 2000s 2020s

MAINFRAME

ERA

One

Computer

Thousands of

Users

PC

ERA

One

Computer

One

User

MOBILITY

ERA

Several

Computers

One

User

UBIQUITY

ERA

Thousands of

Computers

One

User

As digital technologies become universal, they have transformed

the people living and life, and business environment.

User Model Evolution

Un-Trusted Environment Reality

32

Cloud Computing
Environments

Consumer Devices & Home Networks & Internet of Things

Public Internet
(HTML5)

Un-trusted

environments

are everywhere

and even

becoming more

dominated in

digital world

Persistent security

on

un-trusted

environments

is becoming

#1 concern

Advanced Persistent Threats (APT or APA)

You are compromised! But you just don’t know it!!

33

1. Collect
intelligence

2. Find a point
of entry

3. Call home

4. Search for
data/assets

5. Move
throughout the

network

6. Extract data

Targeted

Patient

Goal-Oriented

Connect to home

Persistent

Insider Threats - No longer an Incident, It’s a Big Problem

▪ Two categories of insider tcareless userhreats (ITS)
▪ By [ex-]employees or associates of an organization who either maliciously or accidentally take action that put

their organizations and data at risk.

▪ By outsiders who have obtained the legitimate credentials needed to gain access and conduct malicious

activities that cause operational harm and steal data using APT.

▪ Insider threats landscape (2017 report)
▪ Top insider threats

▪ Inadvertent data breaches (careless user): 71%

▪ Negligent data breaches (user willfully ignoring policy): 68%

▪ Malicious data breaches (user willfully causing harm): 61%

▪ Data most vulnerable to insider attacks

▪ Customer data: 63%

▪ Financial data: 55%

▪ Intellectual property: 54%

34

▪ Black-box context is facing new security problems that traditional security models and

technologies cannot not offer sufficient solution.

▪ There is no system can be fully trusted and secured.

The huge amount of

data residing on

servers (clouds) is a

highly attractive target

Traditional Security: Seriously Broken (1/3)

▪ Sandboxing-based

▪ One of oldest security techniques and has been widely using to prevent traditional man-in-the-middle

attacks not man-at-the end attacks.

▪ It seeks to protect the host against hostile software, not the SW systems or applications and their data

against the potentially hostile host

▪ It leaves us with a false sense of security: many threats cannot be addressed by the approach. For

example, it does absolutely nothing to prevent massive surveillance.

▪ Signature-based

▪ The long-standing blacklisting approach is losing the battle against new malware.

▪ Right now, about more about 1 million new pieces of malware every day, and this will get much worse in

the future.

▪ Signature-based defenses are grossly insufficient.

35

Traditional security is not designed to counter today’s new and

advanced threats. Why?

Traditional Security: Seriously Broken (2/3)

▪ Perimeter Oriented

▪ Perimeter oriented approaches concentrate on preventing or detecting threats entering networks of an

organization, but perimeters are very porous these days.

▪ Anything with an IP address can be a launch pad for attackers

▪ Perimeter tools and security techniques were not designed to protect the data and against today’s advanced

threats.

▪ Within the perimeter, old security models are reactive. When you get past the perimeter, It’s no longer safe.

▪ With the range of new use cases that need to be supported,

▪ from BYOD to fixed function devices,

▪ from accessing legacy web apps to new cloud-based app development and services,

IT is left with the challenge of working with a varied set of non-integrated tools while striving to achieve

regulatory compliance and security at the same time.

▪ Compliance oriented

▪ Compliance meets the requirements of auditors, or specific government mandates, rather than addressing the

biggest current threats.

▪ The danger is that we may mistake compliance with security standards for actual security.

▪ They are two very different things, and some of them only deal with past threats.

36

Traditional Security: Seriously Broken (3/3)

▪ Fixed Security
▪ A typical approach to security is to assume that the initial design will remain secure over time.

▪ It treats security as a fixed target

▪ Assuming that innovative attacks will not arise after deployment.

▪ Most security designs and implementations follow such a static deployment model, especially for

hardware-based security.

▪ Once cracked, hardware security can’t be recovered quickly or cheaply.

▪ In reality, anything, including clever hardware, can be hacked given enough time and effort.

37

Therefore, new dynamic security approaches treat security as

evolving and assume that security must be continually renewed,

whether as part of ongoing policy or reactively.

The Heart of the Matter (1/2)

▪ While information security risks have evolved and intensified, security

technologies and strategies have not kept pace.

▪ Today, organizations often rely on yesterday’s security strategies to fight a largely

ineffectual battle against highly skilled adversaries who leverage the threats and

technologies for tomorrow.

▪ The sophisticated intruders are bypassing outdated defenses to perpetrate

dynamic attacks that are highly targeted and difficult to detect.

38

You can’t fight today’s threats with yesterday’s strategies

The Heart of the Matter (2/2)

39

What’s needed

 A new model of information security that is driven by knowledge of

threats, assets, and the motives and targets of potential adversaries.

 A new understanding that an attack is all but inevitable, and

safeguarding all date at an equally high level is no longer practical.

 Pioneering technologies, processes and a skill set based on

counterintelligence techniques.

▪ Once a targeted attack is accomplished and the network is breached, there is nothing

to stop the damage.

▪ Organizations are still focused on stopping the landing point and not on what they

must do.

New Fundamental Challenges to Information Security

40

White-Box

Security

Dynamic

and

Renewable

Security

White-box security and SW protection is more

about security of un-trusted environments

Traditional security is more about

security of trusted environments

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

41

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

White-Box attacks are

everywhere within un-

trusted environments

WhiteBox

Attacks in

Real World

Cryptographic Assumption and Traditional Attacks

Bob

Black Box Attacks or Grey Box Attacks

Alice

Software Software

Network

Trusted Inside Black Box

• Alice and Bob each have exclusive

control over their own computers

• No information leaves from or store

into their computers without their

approval

42

Man-In-The-Middle Attack

(Indirect, side-channel)

Perimeter Defenses

White-Box Attacks

Bob is the Attacker

Software

43

Network

Alice

Software

Man-At-The-End

Attack

 Device and environment are un-
trusted

 Attacker has direct access to the
machine and software no matter
whether it’s running or not

Attackers have open-end powers to do

 Trace every program instruction

 View the contents of memory and cache

 Stop execution at any point and run an off-line process

 Alter code or memory at will

 Do all of this for as long as they want, whenever they want,
in collusion with as many other attackers as they can find

Attacking has much less

limitation than protection

Just Like Security and Protection in Museum

44

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

45

Attack Effectiveness

▪ Input / output

Black-box

▪ Timing analysis

▪ Power analysis

▪ Fault injection

▪ Man-in-middle-attacks

▪ SW vulnerabilities

▪ Buffer overflow

▪

Grey Box

White-box ▪ Debuggers

▪ Emulators

▪ Computation tracing

▪ Decompiles

▪ Profiling

▪ IDA pro

▪ Symbolic analysis

▪ Malware

▪ Other attack tools & methodsD
if

fi
cu

lt
y

to
 P

ro
te

ct
 A

ss
et

s

Easiest

Hardest

Weakest Strongest

White-Box Security Challenges

Easy to
protect

Much more
difficult to

protect

46

What Are the Threats?

IDA Pro

HexRays

OllyDbg

LordPE

GDB

HIEW

HexEdit

VMware

QEMU

Direct WhiteBox Attack

Colluding Attack

Differential Attack

time

version1 version2

Two Categories of White-Box Environments

47

White-Box Environment

Attacks by

Human Hackers

Directly

Attacks by

Malwares and

Botnets

(Robot-Hackers)

Directly

Perimeter Defenses Do Not Prevent White-Box Attacks

Today

Customer

SQL Database

F
ire

w
a
ll

Corporate

Network Internet

Home

Network

Attacks

Attacks

> Firewall

> Authentication (VPN, SSL, …)

> Intrusion detection

> Malware detection and anti-virus

> Cryptography (Black box)

Man-in-The-Middle Attack

> Physical security

> Secure operation systems

> Software vulnerability check

> Identity management

> Trusted computing

Traditional and classic computer and network security

technology only provide perimeter defenses

Trusted

Inside

Attacker
Hostel

Attacker

Man-At-The-End Attack

?

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

49

Perimeter security is invariably bypassed once hackers have
physical access

PROBLEM

Software Protection Challenges

50

Bob is the Attacker

Software

Network

Alice

Software

How to provide

necessary

trustworthy to

software in the

Un-Trusted

Environment

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

51

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

Both Software Security and
Software Protection must

become mainstream, not only
in the commercial world, but

also in the research
community

Software

Security: More

Than Vulnerability

Check and

Detection

White-Box Vulnerabilities – Example 1

#include <stdio.h>

main() { /* Validate the users input to be in the range 1-10 */

int number; int valid = 0;

while(valid == 0) {

printf("Enter a number between 1 and 10 -->");

scanf("%d", &number);

/* assume number is valid */

valid = 1;

if(number < 1) {

printf("Number is below 1. Please re-enter\n");

valid = 0;

}

if(number > 10) {

printf("Number is above 10. Please re-enter\n"); valid = 0; }

}

printf("The number is %d\n", number); }

52

Important constants are exposed in memory

Operation can be modified statically and dynamically

Function calls can be snipped and

snooped

Branches can be jammed dynamically

All vulnerabilities must be prevented by SW protection

▪ Session key is sent in the clear

▪ Content key is exposed on the client

▪ Content is exposed on the client

▪ Session and content keys can be extracted during use

content AES

encrypt

CK SK

AES

encrypt
contentECK CKESK

CK content

Server

Client

AES

decrypt

AES

decrypt

All vulnerabilities can be prevented using White-Box Crypto

53

White-Box Vulnerabilities – Example 2

Who Are the Hackers?

Unsophisticated Attackers

Organized Crime

Nation States

Terrorist Organizations

54

Sophisticated
Hacktivists

Attack Targets – Digital Assets

55

Nations &

Governments

Personal

DataEmails
Anything

Digitalized

Financial

Services

Retailer and On-line

Businesses

IP Rich

Organizations

Critical Infrastructure

Providers

Social Groups and

Networks

. . .

Millions of

Individuals at Once

Attacks on Software
Software is susceptible to different attacks

56

Runtime memory inspection

Disassembly

Differential attack

Collusion

Reverse control flow

Interactive debugging

Process snooping

Data lifting

Code lifting

Modifying control flow

Data/program file replacement

Branch jamming

Automatic attack

Redeployed data files

Dynamic library exploits

Unauthorized use

Reverse engineering

Tampering

Profit

Different attacks need different protection

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

57

Specific Problem: Black Hole Effect

▪ The black hole effect occurs when part of the application is very secure but

the rest is in the clear

▪ Hackers mostly attack the boundary between the secure and the non

secure parts of a program

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

58

Specific Problem: Black Hole Effect: How to Fix It

▪ To Fix the Black Hole effect

▪ More lighter obfuscation in the rest of the program

▪ Faster generated code so that more security can be use in the white area

▪ Transcoder Levels for low security on the rest of the application

▪ Blur the boundary between the secure and the rest of the program at low

cost

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

59

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

White-Box security is new

security paradigm well

beyond traditional

computer and network
security

Power of

Software

Protection

Key Objectives of Software Protection

▪ Resist static and dynamic reverse-engineering

▪ Resist tampering (i.e. unauthorized modifications)

▪ Resist cloning (i.e. moving software to a node it is not authorized to

run on)

▪ Resist spoofing (i.e. having software use false identification

information, such as over a network)

▪ Hide both static and dynamic secrets, as they are created, moved,

and used.

▪ Impede the production and distribution of useful “crack” programs.

▪ Facilitate timely, intelligent responses to crack incidents.

60

▪ Use software protection tools and libraries to make

software self-protected at build-time

▪ Provide a comprehensive approach to software security

Transcoder
Code

Transforms

Asset / Key

Hiding

White-box

Cryptography

Integrity

Verification
Anti-Debug

Secure

Loader

Tools

Program Interlocking

Tools

61

Software Protection at All Levels

Dynamic

Code

Encryption

Secure

Storage

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

62

▪ Protect application
code against a
collection of attacks

▪ Provides a multi-
layered and
interlocked defenses

▪ Flexible and modular
to choose the right
combination of
defenses

Making security inseparable from your software

Program Interlocking

Multi-Layered and Interlocked Protection

Homomorphic Control Flow Transformation

Homomorphic Data Transformation

White Box Cryptography and Key Hiding

Anti-Debug

Node-locking

Secured Storage

Code Encryption

Diversity & Renewability

Integrity Verification

Homomorphic
Virtual Machine

Based on
SW Protection

C/C++ Protection and Binary Protection

Page 63

Cloaking Engine

Transcoder Back-End

Transcoder Front-End

C/C++
Source Code

Fabric ++

Cloaked Fabric ++

Protected C/C++
Source Code

Compiler &
Linker

(Protected) Binary

Binary Protection Tools

Secured
Libs &
Agents

Native Execution Environment

Full Protected Binary

Source Level Protection Binary Level Protection

Transcoder

WB
Crypto

Tool

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

64

Unified Cloaking Toolset

Cloaking Engine

Transcoder Back-End

Source Code in Object-C, Java, #C and
other languages

F2L / L2F
Converter

LLVM Optimizer
& Other Tools

Optimized & Cloaked
Native Code

Optimized & Cloaked
asm.js, JS, Wasm

LLVM Front-End ToolsTranscoder Front-End

LLVM Compiler & Linker

Cloaked
C/C++ Source Code

C/C++
Compiler & Linker

Emscripten

C/C++
Source Code

JavaScript/Binary Code

LLVM IR

LLVM IR

LLVM IR

Fabric++

Fabric++

Binary
Rewriting

Tool

Software Diversity: the-State-of-the-Art

▪ Diverse software instances are

functionally equivalent but

structurally and semantically

diverse

▪ Each instance must be attacked

separately by a skilled hacker

▪ Dramatically increases the work

to create an automated attack

tool

▪ The production of diverse

instances is fully automated by

the Cloakware tool chain

65

Application

software

Random seed

values

#1
1836392838382…

#2
9478437688574…

#3
4761054329489…

…

Diversified

instances of

application software

#1

#2

#3

Cloakware

development

tools

Value of Software Protection

Secured Input
Authentication, validation,

integrity, confidentiality of

input data

Secured Output
Authentication, validation,

integrity, confidentiality

of output data

Hide Algorithms &

Computations

Hide Internal Data
Including internally

initialized data

Tamper Resistance
Makes it hard to modify

the code’s data and

control flow

Tamper

Detection

Damage

Mitigation

66

Technology

Prevent Analysis
Prevent Effective

Tampering*
Foil

Automated

Attacks

Supports

Software

DiversityStatic Dynamic Static Dynamic

Data Flow

Transforms
✓ ✓ ✓ ✓ ✓ ✓

Control Flow

Transforms
✓ ✓ ✓ ✓ ✓

White-box Crypto ✓ ✓ ✓ ✓

Program

Interlock
✓ ✓ ✓ ✓ ✓ ✓

Integrity

Verification
✓ ✓ ✓ ✓

Anti-Debug ✓ ✓ ✓ ✓

Code Encryption ✓ ✓ ✓ ✓ ✓

67

Power of Protection Technology (examples)

* Tampering which causes software to fail is less threat than software modified to achieve a hacker’s specific desired result

Deployments are Rarely Simple

▪ Multiple Languages

▪ C, C++, Java, C#, .NET, JavaScript, Flash, Ruby, Perl, Ajax

▪ Heterogeneous System Run Environments

▪ Android: Linux, Native & Dalvik VM

▪ BluRay Disc: BD+ VM & Native & BD-J

▪ WinMobile: C#, Native

▪ Multiple Platforms

▪ Adobe Flash Access: PC, Mac, QNX, Android

▪ Apple iTunes: Mac, Win, iOS

▪ Comcast Xfinity: iOS, Android

▪ CA: ST40, MIPs, x86, Amino, Broadcom

68

Security must balance with constraints, in particular, performance

Cloakware for Applications - Built on Core Technology

Application Protections

API Protection

Node Locking

Jailbreak & Root Detection Anti-Hooking

Diversity & Renewability

Anti-Tamper

Java Access Control Anti-Reverse Engineering

Cloakware for Applications

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

70

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

What can JavaScript and

Webassembly Protection
do?

Web

Application

Security

Challenges

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

71

Web Server

Current Security Challenge of Web Application Environments

Trusted

Client and Internet Environments

Un-Trusted

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

72

Browser Environment on Client Device

JS Engine

Browser with asm.js Support and Wasm

asm.js optimizer Compilation

Native Execution Engine

JS Interpreter

Is asm.js
enabled?

no (normal js)

yes (asm.js)

asm.js Source

Slow

About half the native speed of C++, expect much
closer to native performance with additional dev

As the next evolutionary step of asm.js, WebAssembly (Wasm) is a new project being worked by Mozilla,
Microsoft, Google and Apple to create a new standard, that defines a portable, size- and load-time-efficient
format and execution model specifically designed to serve as a compilation target for the web and non-web.

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

73

JavaScript Protection  Web Application Protection?

Is it possible to protect web applications
running in a browser environment?

Rest of the world does not believe
that this can be done by using

software protection technologies

Don’t know
how you

can?

It is
Impossible!

Irdeto is a leader to develop new
technology to protect and secure

web applications by protecting
JavaScript and Webassembly

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

74

▪ Created a trusted digital platform for a protected web application

inside web browsers

▪ Enforce integrity of the web application and protect 'business

logic' running in web browsers

▪ Allow businesses to engage with their users in a more secure

and reliable fashion to protect their business models

Security Capability of Irdeto JavaScript and Webassembly Protection

Now, a web application can be protected
by itself even if in a hostile web browser

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

75

Overview of JavaScript/WASM Protection Technology

▪ JS/WASM Cloaking Technology

New JS protection tool chain combines the Irdeto Transcoder with other enabling
technologies such as LLVM and Asm.js

▪ Direct JS Protection

New set of security protections applied directly to JS code analogous to Irdeto’s
source and binary code protection features

▪ New Trusted Platform for Tethered Web Applications

A new trust model leveraged JS/WASM cloaking and direct protection capabilities
above

▪ Server-based root-trust and security enforcements

▪ Code and security behaviors: dynamic, randomized, agile, diversified and
renewable during security life cycle

▪ White-box encrypted messaging between client & server

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

76

New Trusted Digital Platform of Tethered Web Applications

Security Server

Client Browser Environment

Server Security Elements
and Manager

DOM/Name Space

Client Security Elements
and Protected App

JS1i

JS2i

JS3i

JSni

ith Instance

Secured Local Storage (Shared-Secrets)

Shared-Secret Manager
(Time Dependent Shared-Secrets)

Secured Messaging Manager

Application Web Server

JS Protection Tooling

Tamper Detection Manager

Diversity and Renewability Manager

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

77

New Business Perspectives of Web Protection

Web Media Protection

Online Advertising
Anti-Fraud

Building Irdeto Web Protection Technology and Solutions
JS/Wasm Cloaking - Direct JS Protection - Tethered Trust Model

Right Now In the Future

Protect Many
Web Apps

Online Gaming

Online Banking

Webmail Security

HTML5 Offline
Game Piracy

Secure Virtual
Client

Data SecureLets

Application
SecureLets

Secure Video and
Voice Chat

New Products, New Markets, New
Services, and New IP License

Opportunities

Other Tethered
Security

IoT Security

Secure Mobile and Online
Payments

Secure Mobile Game Billing

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

78

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

Trusted model to address both
man-in-the-middle and man-

at-the-end attacks

Connected

Application

central

based

Security

Model

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

79

Economics of Security (1/2)Connected Application Topology

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

80

E. G. AbdAllah, M. Zulkernine, Y. X. Gu, and C. Liem, “TRUST-CAP: A Trust Model for Cloud-based Applications”, IEEE 41st

Annual Computer Software and Applications Conference on the 7th IEEE International COMPSAC Workshop on Network

Technologies for Security, Administration and Protection (NETSAP), Torino, Italy, July 2017, pp. 584-589, DOI:

10.1109/COMPSAC.2017.256.

Connected

Application

Security

Economics of Security (1/2)Application Centric Trusted Model

Cloud Security Infrastructure

Mobile Security InfrastructureWeb Security Infrastructure

Mobile Security

Improvement

Web Security

Improvement

Cloud Security

Improvement

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

81

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

Like the lifecycle for human
health protection, the security

lifecycle of a digital asset
application mandates

protection from creation,
through distribution and then
ultimately consumption from

being deployed in the field

Software

Security

Lifecycle

and Digital

Asset

Protection

Proactive Healthcare

Monitoring & Diagnosis

Healing & Recovery

Original Healthy Body

& Improved Immunity

Medical and other

Treatment

Human Body Protection

Proactive Security

Countermeasures

Monitoring

and Analysis

Renew Security

Build in Attack

Resistance and

Robustness

Attack Response

Software Protection

▪ Software security is a

young field

▪ Software protection

is becoming main

stream of system

security

▪ Irdeto has best-

in-class tools and

technology for

software security

lifecycle

Healthcare is one of

the largest industries

and fields of research

82

Security Lifecycle Management

Traditional Security Model

▪ Typical approach to security is to assume that the initial design will remain

secure over time

▪ Anything can be hacked given enough time and effort
▪ Set top boxes, PC apps, Mobile devices, CE devices

▪ Content owners want to know, “What is your security strategy”?
▪ How will you limit potential damages if there is a breach?

▪ What is your renewability strategy?

Initial

Attack

Resistance
Digital Asset

or Media

Player Deployed

To the field

Security Design

H1:

Analyze
Security

H2:
Develop
Attack

H3:
Automate

Attack

H4:

Distribute
Attack

Attack Development

The Result of Static Security

100 %

0

In
st

al
le

d
 B

as
e

Se
cu

ri
ty

Static Security
Compromised

Breach

Time

What is Dynamic Security?

85

Dynamic Security is a security model that enables the protection of digital

assets against unauthorized use through the upgrade and renewal of the

underlying security in the field.

▪ Proactive prevention

▪ Monitor hacker channels to understand attack techniques and methodologies

▪ Apply security updates to reset the hacker’s clock

▪ Reactive reduction

▪ Limits the impact of a breach

before it has a significant impact

▪ Benefits:

▪ Disrupt potential hacks before they happen

▪ Mitigate impact of a security breach

▪ Minimal disruption of business

86

Software Diversity

▪ All program Constructs can Be

Diversified

▪ Randomly Chosen:

- Order & program Layout

- Function Families

- Constants

▪ Seeded Build
- Reproducibility

▪ Diversity Control and Opportunities

- On the source level

- At the compilation time

- On the library level

- At the link time

- On the binary level

- Combination above

▪ Static and Dynamic Diversity

ConstantsFunction Families

Seed_1 Seed_2

Any software protection techniques

can make own contributions to

software diversity

Program Instance 1 Program Instance 2

Static Security vs Dynamic Security

Once static security breaks,

the entire security is gone

and hard to be restored

Dynamic Security

87

Once dynamic security breaks,

the security can be renewed

and restored immediately in a

planned way

Static Security

Minimize scope of attack -- Prevent automated attacks

Provide rapid recovery in the event of an attack

Make the business unattractive to the hacker

Software Diversity Benefits

▪ Strong attack response

▪ Reduces duration of attack

Investment

$

Time
Reward

Diverse

production
Reduces scope of

attack

Tamper

resistance
Raises cost of

attack

Resulting Hacker

Business Model

Resulting Hacker

Business Model

Diversity! Renewability!! Countermeasure!!!

88

Attack Mitigation and Recovery

Dynamic Security and Lifecycle Management

Optimize Security

Design ActiveCloak Server

Attack

Monitoring
Countermeasures

Design & Dev ActiveCloak Server

Product Security Initial Attack

Development Design Resistance

Watch Mitigation Renewed Attack

And Defend Planning Resistance

Attack

Analysis

Pre-Launch Post-Launch

89
2011© IRDETO | This document contains information that is privileged or confidential

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

90

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

New View of

Information

Security and New

Research

Opportunity

New View of Information Security

Security for

Man-In-The-Middle Attack

Dynamic
Security

Security for

Man-At-The-End Attacks

Static
Security

Security for

Web Browser

BlackBox Crypto vs. WhiteBox Crypto vs.

Ideal SW Protection

92

Software Protection is largely different transformations with

very different security profile comparing to traditional security

long-term

blackbox

security

resistance

to hostile

host attacks

Ordinary Black-Box

Cryptography

long-term

blackbox

security

resistance

to hostile

host attacks

White-Box

Cryptography

long-term

blackbox

security

resistance

to hostile

host attacks

Ideal Software

Protection

by

itself

with

std.

crypto

Security vs. Practice

93

S
e

c
u

rity
 S

tre
n

g
th

Much Less PracticalHighly Practical

Impossible Program Obfuscation

• Homomorphic

Transformation

• White-Box Crypto

• Other SW Protection

Technology Gap

Cryptography and

SW protection

research can make

good contributions

Full

Homomorphic

Encryption

Indistinguishability

Obfuscation

WB Security Problem Space

94

WB Security Problems

Homomorphic

Encryption
White-box Cryptography

Problems Addressed by

Homomorphic Transformation

Big Unknown: Protection Measurement (1/2)

It is very difficult by adapting any existing theories and methods to

develop commonly acceptable metrics on the effeteness of SW

protection.

▪ Existing software complexity techniques and methods has very little value

for resolving this problem

▪ Current computation complexity theory cannot apply easily and directly to

develop a formal model for such a measurement

▪ Cryptographic analysis methods on black-box security are not applicable

well for many cases

95

Big Unknown: Protection Measurement (2/2)

Some Interesting Observations
▪ SW protection needs to prevent all attacks but attacking only needs to find one place to break.

▪ There is no single protection can stop all attacks. Instead, we have to layer and combine different

protection techniques into a protected and interlocked security maze.

▪ More [less] complicated protected software doesn’t mean more [less] secure

▪ Static measurement is not enough to address security dynamics

▪ Attacking mainly is a manual process. How to measure the effectiveness of attacks by different

skilled attackers?

▪ Security has to deal with unknown attacks in the future? How?

▪ Perfect security does not exist! SW security must be relative and renewable!

96

A good opportunity for research

Work with SW protection professionals to develop measurement model and metrics on SW

security and protection (Good PhD research subjects)

Part 3: White-box Security Patterns

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

98

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

Software security now is an art
not a science. Pattern

abstraction is one of valuable
steps forward to scientific

foundation

Introduction

to White-Box

Security

Patterns

WhiteBox Security Patterns

▪ Abstract and define white-box computing problems (vulnerabilities, threats
and attacks) and establish the security solutions that defend against them
▪ Develop a small and finite set of WB computing security patterns

▪ Easy to understand and adapt in real world

▪ Create a new common language for software security and protection to
▪ Provide an effective tool to promote software protection technology

▪ Provide a foundation for software protection evaluation model and methods.

▪ Make it much easier to engage the wider academic community, generate more research
attentions and create generic mindshare

▪ As a reference used by security professionals and ultimately would
become the secure application guidelines
▪ The security patterns should be used to create a set of security architecture and design

guidelines to the security professionals and security system designers

Advanced

WBC

Patterns
(Covered by next

generation of

technology and

products

New WBC

Patterns
(for connected multiple

environments)

White-Box Security Patterns: Present & Future

100

T
e

c
h

n
o

lo
g

y
 S

p
a

c
e

Application Space

Well

Understood

WBC Patterns
(more about single environment)

Direct Attack Points (Just Examples)

101

Producing Software (Trusted Environment)

Running Software (White-Box Computing Environment)

Distributing Software
(via 3rd Party Environment)

Source code
Compiling &

Linking
Executable

Executable

On-line

Download

Build-in Pre-Install

Executable

Other

Applications

Run-time Environment

Data and

data

flow
Control flow

Operations Functions and

invoking
Program

decision and

property

Cloning

Attacks

Attack

Tools

Tampering

Attacks

Automatic

Attack

WB Security Pattern Coverage

102

Running Software (White-Box Computing Environment)

Executable

Other

Applications

Run-time Environment

Data and

data

flow
Execution flow

Operations Functions and

invoking
Program

decision and

property

Distributing Software
(via 3rd Party Environment) Executable

On-line

Download

Build-in Pre-Install

Cloning

Attacks

Attack

Tools

Automatic

Attack

Secured

loader

Program

integrity

verification

Software

diversity

Anti

debug

Homomorphic

Data

Transformation

Reinterpretat

ion

Control flow

obfuscation

Execution

flow integrity

Function

Boundary

Concealme

nt

Shim

detection

Protecting

program

decision and

property

White-box

Cryptography

Dynamic

code

decryption

SW

anchoring

P
a

tte
rn

Tampering

Attacks

Well Understood WB Security Patterns

▪ Primitive Patterns

Pattern 1: Homomorphic data transformation

Pattern 2: Protecting program decision and property

Pattern 3: Function boundary concealment

Pattern 4: Control flow obfuscation

Pattern 5: Execution flow integrity

Pattern 6: White-Box cryptography

Pattern 7: Program integrity verification

Pattern 8: Anti-debug

Pattern 9: Secure loader

Pattern 10: Dynamic code decryption

Pattern 11: SW anchoring

▪ Abstract Patterns

Pattern 12: Software diversity

▪ Derived Patterns

Pattern 13: Reinterpretation

Pattern 14: Shim detection

103

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

104

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

Description

in Details

for Four

White-Box

Security

Patterns

WB Security Patterns

▪ Primitive Patterns

Pattern 1: Homomorphic Data Transformation

Pattern 2: Protecting program decision and property

Pattern 3: Function boundary concealment

Pattern 4: Control flow obfuscation

Pattern 5: Execution flow integrity

Pattern 6: White-Box cryptography

Pattern 7: Program integrity verification

Pattern 8: Anti-debug

Pattern 9: Secure loader

Pattern 10: Dynamic code decryption

Pattern 11: SW anchoring

▪ Abstract Patterns

Pattern 12: Software Diversity

▪ Derived Patterns

Pattern 13: Reinterpretation

Pattern 14: Shim detection

105

Homomorphic Data Transformation:

Security Context

106

Main

Memory Data

Secondary Storage

CPU

Fetch

Registers
Instruction

Register

White

Box Attacks

Execute (ALU)

Inspect and

peruse data

Inspect and

peruse data

Binary

Code

Homomorphic Data Transformation:

Security Problem

▪ At runtime, data frequently exists in a program or file in

various classes of storage for white-box exposure:

▪ In registers

▪ on the stack, the heap or disk

▪ other forms of secondary storage etc

▪ Computable data stored in different storage forms or

transferred from different sources may have different

vulnerabilities, but a contributing factor common to them

is the well-known layout of data while they are

processed by a program

107

Homomorphic Data Transformation:

Security Problem (2)

▪ Data can be transferred dynamically via network

connections to local device so that they can be

accessed by local program

▪ Once the attacker reaches a data asset, that asset

succumbs completely because the data is stored using

conventional formats

▪ The attacker will know how to discern the object’s value

and assign to it a properly hacked value

▪ These kinds of storage technology normally have little

protection against white-box attacks

108

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

109

Homomorphic Code/Data Transformation are Essential

▪ Modern computer systems provide an open & common computation space

▪ Computational data is a crucial asset needing protection

▪ Both the original values of computational data, and the computations on it, must

be hidden to

▪ Protect against reverse-engineering and subsequent code compromise

▪ Using static tools such as program analyzers, binary editors and disassemblers

▪ Using dynamic tools such as debuggers, logic analyzers and emulators

Transforming of data, computations and data
flow is an essential first step in HO

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

110

Homomorphic Data Transformation: Principle

OP

X
Y

Z

Computation
Of X and Y

‘Smooth’ Common Space: Z= F(X, Y)

Transformed Space: Z’ = F’(X’, Y’)

Value Coding

encoding of X
X’ = CX(X)

encoding of Y
Y’ = CY(Y)

Y

X = CX
-1 (X’) Y = CY

-1 (Y’)

X

X’ Y’

encoding of OP and result value Z
Z’ = CZ (F(X,Y)) = CZ (F(CX

-1 (X’), CY
-1 (Y’)))

Z’

Original data flow

Cloaked data flow

Relationship between smooth and transformed value

F’(X’, Y’)

New code for transformed
computation (OP) and its result
value (Z) in transformed form.
Original X, Y and OP are
disappeared.

encoding of Z
Z’ = CZ(Z)

The implementation
computes in the
Transformed Space without
encoding/decoding
operations.

The green blob is a homo-
morphism with 3 connecting
encodings (for 2 inputs and
1 output). Multiple distinct
homomorphic blobs connect
at the I/O points, making
the obfuscated code a
homomorphic network.

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

111

Homomorphic Data Transformation: in Memory and Operations

Case Memory Register Operation

1 T T T

2 null T T

3 null null T

4 null null null

5 T T null

6 T null null

7 T null T

8 null T null

Recommended use of transforms

Applicable cases

Transform Applicability
Memory

(Data variables)

Registers

(Intermediate Results)

Operations

(Computations)

Mult

Add

T1

T2

T3

null

T4

a (T1)

b (T2)

c (null)

d (T4)

T1

T2 T3

T3

null

T4

User can select transformations or preserving by using setting

In Memory Data Transforms Operational Data transforms

Load

Store

Avoided cases if possible

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

112

112

▪ Mathematical transformations on
▪ Data Values

▪ Data Locations

▪ Data Operations

▪ Many Transform Families

▪ Randomness

▪ Random seeds support repeatability

▪ Must balance security vs. performance
to fit the application

yx

z

a

op1

op2

Original Data Flow Graph Transformed Data Flow Graph
Data Transformations

Mapping

Original data, value,
operation and data

flow are hidden after
data transformation

Homomorphic Data Transformation: In General

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

113

Homomorphically Transformed Computation Space

Homomorphic transformation of data and computation
space is fundamental to homomorphic obfuscation

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

114

▪ Many to many mappings between original and transformed

data and code make reverse engineering difficult

(NP-complete fragment recognition problem)

z’ = x’z’ = 2x’ – y’z’ = 2x’ – y’z’ = x’ + y’Transformed code segment

z’ = 5z -18z’ = 5z + 3 z’ = 10z + 4z’ = 5z + 17

y’ = -5y +11y’ = -10y + 10y’ = 5y + 10

x’ = 5x +7x’ = 5x +7x’ = 5x +7x’ = 5x +7Transcoder transforms

z = x + 5z = 2x + yz = x + yz = x + yOriginal code segment

Sample 4Sample 3Sample 2Sample 1

114

Ambiguity via Homomorphic Data Transformation (examples)

WB Security Pattern

▪ Primitive Patterns

Pattern 1: Homomorphic data transformation

Pattern 2: Protecting program decision and property

Pattern 3: Function boundary concealment

Pattern 4: Control flow obfuscation

Pattern 5: Execution flow integrity

Pattern 6: White-Box cryptography

Pattern 7: Program integrity verification

Pattern 8: Anti-debug

Pattern 9: Secure loader

Pattern 10: Dynamic code decryption

Pattern 11: SW anchoring

▪ Abstract Patterns

Pattern 12: Software Diversity

▪ Derived Patterns

Pattern 13: Reinterpretation

Pattern 14: Shim detection

115

Execution Flow Integrity:

Security Context and Problem

▪ Basic blocks are primary components of program

execution flow. Flow dependency between those basic

blocks is statically fixed.

▪ Control flow obfuscation provides only for hiding the

original intent of the control flow, but cannot guarantee

execution flow integrity

▪ The protection of execution flow of a function requires to

resolve the following two problems:

▪ Transform control flow and make the control flow hard to be

analyzed and extracted statically and dynamically.

▪ Transform execution flow of a function so that the flow cannot

be tampered easily and can be detected and mitigated if it is

tampered

116

Execution Flow Integrity:

Security Intent

▪ Extend original execution flow with history dependency based

on original execution order of a function

▪ For each particular flow from one basic block to another block,

inject a pair of encode and decode and necessary temporary

variables to interlock the flow

▪ The original control-flow is transformed into a data directed

control-flow by injected history dependency

▪ The extended execution order is no longer static and must be

determined at run-time by the computation of history

dependency relationship

▪ Data transformation can be used to protect the history

dependency computation

▪ Any tampering attack to history dependency will result wrong

execution flow

117

Execution Flow Integrity:

Solution – Control Flow Flattening

Control Flow Flattened Program

…

1 2 3 7

Original Program Flow

Conditional jump

Conditional jump
Loop

Exit

Start Start

Exit

118

Execution Flow Integrity: Solution -

History-Dependent Transforms

Switch (case)

…

1 2 3 7

case = b case = D(d)
case = D(c) case = D(a)

b = D(b) b = E(b)

d = E(d)a = E(a)a = 99

= 1= 3 = 7 = 2

c = E(c)

HD(a)

HD (b) HD (c) HD (d)

119

WB Computing Security Pattern

▪ Primitive Patterns

Pattern 1: Homomorphic data transformation

Pattern 2: Protecting program decision and property

Pattern 3: Function boundary concealment

Pattern 4: Control flow obfuscation

Pattern 5: Execution flow integrity

Pattern 6: White-Box cryptography

Pattern 7: Program integrity verification

Pattern 8: Anti-debug

Pattern 9: Secure loader

Pattern 10: Dynamic code decryption

Pattern 11: SW anchoring

▪ Abstract Patterns

Pattern 12: Software Diversity

▪ Derived Patterns

Pattern 13: Reinterpretation

Pattern 14: Shim detection

120

White-Box Cryptography: Security Context –

Cryptography Is Used Everywhere

Modern cryptography is one of most fundamental

technology adopted for traditional security

problems.

121

Ar

t

Scienc

eCryptography Past 90 years

Solid Security Primitives

and Protocols

White-Box Cryptography: Security Context –

Cryptography Is Used Everywhere

▪ For applications that run in a hostile environment,

cryptographic keys and other valuable assets become

much easier and common attack targets for a multitude

of purposes than in a trusted environment

▪ In most business models, the recovery of some or all of

these keys directly threatens the revenue from the

applications, services, or digital assets

122

White-Box Cryptography:

Security Context – Cryptographic Dilemma

▪ Cryptographic algorithms are well known to attackers

because they are standards-compliant algorithms and

well deployed by information systems (i.e. AES, RSA,

ECC, SHA1).

▪ Whitebox context requires much more severer security

challenges than traditional crypto attacks such as to

black-box and side-channel attacks

▪ any attack that can be mounted through the side-channel can

be mounted more effectively via a direct channel

▪ the information the side channel reveals can always be revealed

through a direct channel as well

▪ black-box crypto security does not work for white-box context

123

White-Box Cryptography:

Security Problem – Key and Valuable Assets

▪ Software keys can be

▪ generated using high-quality pseudo random number generators

(PRNG)

▪ securely stored

▪ Sooner or later the key is used and the following events

occur:

124

Data

Four score and seven years

ago our fathers brought forth

on the continent a new nation

conceived in Liberty and

dedicated to the proposition

that all men are created

equal.

Decryption

Extract key from

storage

(encrypt,

deobfuscate)

Key Key is easily extracted

by white-box attacker

White-Box Cryptography:

Security Problem – White-Box Crypto Security

▪ We are now forced to defend against white-box

attackers who are strictly more powerful than classic

black-box and grey-box attackers

▪ How can a secret key be used in a cryptographic

algorithm without being exposed in the context in which

it is attacked in white-box fashion?

125

Existing cryptographic security proofs from the

black-box and grey-box attack context simply don’t

carry over to the white-box context. It is broken!

White-Box Cryptography:

Security Intent

▪ The fundamental security intent of white-box

cryptography is to make the recovery of the key in the

whitebox context at least as difficult, mathematically, as

in the black-box context

▪ Stated in another way, this pattern is to transform a key

such that attacking within the whitebox context offers no

advantage to attacking in the black-box context

▪ Black-box cryptographic security can be truly

guaranteed within white-box context and even improved

further if possible

126

White-Box Cryptography Applies Homomorphism

127

Transformed keyTransformed

data

White-box

cryptography

Transformed and

encrypted output

KeyData

• White-box cryptographic methods use homomorphic transformations

• White-box cryptography ensures that input data, keys, intermediate results and

output data are protected at all times by using homomorphic transformations

x Ek Dk x T1

Cipher text Transformed
Data

x Ek D x T1

Cipher text Transformed
Data

k T2

Transformed
Key

▪ AES and RSA algorithms

▪ AES-128bit / AES-256bit

▪ RSA-1024bit to RSA-4096bit

▪ WB-EC-DSA (sign, verify)

standard NIST curves

▪ Fixed Key WB-AES, WB-RSA

and WB-EC-DSA

▪ Key is fixed and embedded in

WBAES lookup tables

▪ Dynamic Key WB-AES and

WB-RSA

▪ Key is generated/supplied at

runtime and transformed using

data flow transformations

Fixed Key WB-AES, WB-RSA
and WB-EC-DSA

Dynamic Key
WB-AES &
WB-RSA

128

White-Box Cryptography:

Solution - White-Box Ciphers (examples)

White-Box Cryptography:

Solution - WB Implementation

▪ The key is mathematically inseparable from the surrounding

data in which it’s been evaluated and embedded

▪ Keeps a key hidden even if the attacker has visibility

of the executing program

▪ Increases the difficulty of key extraction

▪ The transformed key can be evaluated by an algorithm that

may be different from the original cryptographic operation but

that yields the same result as the published algorithm with the

same input data

▪ WB ciphers can leverage data transformations to ensure that

inputs to and outputs from white-box crypto operations do not

appear in the clear

▪ Moreover, all transformed inputs, keys and outputs can be

involved transformed computations before and after a white-

box crypto operation.
129

WB Security Patterns

▪ Primitive Patterns

Pattern 1: Homomorphic Data Transformation

Pattern 2: Protecting program decision and property

Pattern 3: Function boundary concealment

Pattern 4: Control flow obfuscation

Pattern 5: Execution flow integrity

Pattern 6: White-Box cryptography

Pattern 7: Program Integrity Verification
Pattern 8: Anti-debug

Pattern 9: Secure loader

Pattern 10: Dynamic code decryption

Pattern 11: SW anchoring

▪ Abstract Patterns

Pattern 12: Software Diversity

▪ Derived Patterns

Pattern 13: Reinterpretation

Pattern 14: Shim detection

130

Program Integrity Verification:

Security Context

▪ The modification of application code and data is a

common attack against application software

▪ The user and environment, which the application is

running in, are untrustworthy

▪ The user or environment could modify the application

▪ The application cannot rely on its environment to report or

protect against code and data tampering attacks

▪ There are a wide variety of freely available tools to allow

an attacker to easily modify an application either

statically or dynamically.

▪ These tools may include hex editors, debuggers,

disassemblers and tracers.

131

Program Integrity Verification:

Security Problem

Static or dynamic code & data tampering can

provide an attacker with the ability to modify the

execution of the application resulting in

▪ An undesired behavior

▪ Escalating unauthorized privileges.

▪ Circumventing or breaking the copy protection on the

application

132

Program Integrity Verification:

Security Intent

▪ Program integrity verification is a kind of tampering

resistant techniques to detect and react to tampering of

an applications code and data

▪ Integrity verification of program image and data files on

disk
▪ Module level (executable, dynamic share libs, other binary and data

files)

▪ Integrity verification of program binary in memory
▪ Binary code

▪ Module level (executable, dynamic share libs)

- Single Module or multiple modules

▪ Smaller fine grain level

a) Function level; b) Basic block level; c) Instruction level

▪ Global constants

▪ Export table of dynamic share libs

133

Program Integrity Verification:

Solution – Signing Process at Build-time

Header

Code

Segment
Hash

Encrypt

Signature

Regions

Encrypted

Voucher

Signing tool

▪ “On Disk” API function call

verifies the entire file integrity

▪ “In Memory” API function call

verifies portions of the code

segment residing in memory

▪ Code Segment is partitioned

into regions to speed up

integrity checks

▪ Hash segments contain

several interoperable regions

▪ Run-time Decryption for IV

data uses White Box Crypto

▪

Program Integrity Verification:

Solution – Self-hashing IV Technique

Build-Time Run-Time

Compiler/

Linker

Application

Source

Code Segment 1

Code Segment 2

Code Segment 3

Code Segment n

other segmentsRead only code segment

Signing

Tool

Application Binary (exe/dll)

Hash # of disk image

IV Voucher

Hash # of code segment 1

Hash # of code segment 2

Hash # of code segment 3

Hash # of code segment n

Other info data

Code Segment 1

Code Segment 2

Code Segment 3

Code Segment n

Application In Memory

Loader

Dynamic

Hashing

IV Check

Run-time hash value

Pass Fail

Return & Continue

Good Build-time

hash value

IV library (.lib)API

Self-Hashing

IV Engine

When, Where,

and what for

the IV check

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

136

Server based JS Integrity Verification

▪ The Integrity Verification is a server-side check which detects if the secure

Javascript is being changed

1. Javascript source in the DOM or name space is hashed by the browser.

2. The hash value is sent to a server component

3. The server checks that the hash value matches the expected value for the

specific Javascript instance

• Each Javascript instance uses a different key for the HMAC

▪ IV is a challenge-response mechanism. Data from the server provides

randomness to the hash values calculated to prevent replay attacks

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

137

Integrity Verification

©2016 Irdeto, All Rights Reserved. – www.irdeto.com

138

Runtime Verification

Verifier

virtual private cloud

Different JavaScript

per client

Application Server

Message body +

self-check data

Self-checks

Message body + custom header

workersDiversifier

Javascript

meta-data

Cloudfront

distribution

virtual private cloud

Protected

JavaScript

Summary

▪ Black-box and grey-box security models are inadequate for many

important software applications

▪ We need more research into creating software that is secure in the white-

box attack model

▪ White-Box attacks are much more difficult security problems

▪ White-Box security is a new challenge for both industrial and academic

communities

▪ Software security needs software protection solutions and methods

across the security lifecycle

▪ Software protection is a very young field and many open problems are

new opportunity for talent students and researchers to resolve

▪ Irdeto is a leader in digital asset protection technology with considerable

uptake worldwide

▪ Research collaboration and internship with Irdeto are encouraged

Question?

Thanks!

