
Christian Collberg

Department of Computer Science
University of Arizona

http://collberg.cs.arizona.edu

ISSISP 2017 — Program Analysis

Supported by NSF grants 1525820 and 1318955 and
by the private foundation that shall not be named

Software Protection Research

collberg@gmail.com

http://collberg.cs.arizona.edu
mailto:collberg@gmail.com?subject=

Discussion

Control Flow Analysis

What is Program Analysis?

What is Program
Analysis?

int foo() {
 int x;
 int* y;
 printf(x+*y);
 }

Who calls foo?
Who does foo call?
Is x ever initialized?
Can y ever be null?
What will foo print?

Program Analysis

•Defenders: need to
analyze their program to
protect it!

int foo() {
 … … … …
}

Tigress

int foo’() {
 … … … …
}Obfuscate

Who calls foo?
Who does foo call?
Is x ever initialized?
Can y ever be null?

What will foo print?

•Attackers: need to
analyze our program to
modify it!

De-obfuscate

Who calls foo?
Who does foo call?
Is x ever initialized?
Can y ever be null?

What will foo print?

Extract Code!
Discover Algorithms!
Find Design!
Find Keys!
Modify Code!

int foo’() {
 … … … …
}

Two kinds of analyses:

•static analysis: collect
information about a program by
studying its code;

•dynamic analysis: collect
information from executing the
program.

Who calls foo?
Who does foo call?
Is x ever initialized?
Can y ever be null?
What will foo print?

•static analysis: collect information about
a program by studying its code

int foo() {
 … … … …
}

Static
Analysis

I.e. we analyze
the source or
binary code of the
program itself.

Who calls foo?
Who does foo call?
Is x ever initialized?
Can y ever be null?
What will foo print?

•dynamic analysis: collect information
from executing the program.

int foo() {
 … … … …
}

Dynamic
Analysis

I.e. we analyze a
trace of the
program as it is
running on some
particular input

Program
inputs

•control-flow graphs: representation of
(possible) control-flow in functions.

•call graphs: representation of (possible)
function calls.

•disassembly: turn raw executables into
assembly code.

•decompilation: turn raw assembly code
into source code.

Static Analyses

•debugging: what path does the program
take?

•tracing: which functions/system calls
get executed?

•profiling: what gets executed the most?

Dynamic Analyses

Control Flow
Analysis

•A way to represent the possible flow of
control inside a function.

•Nodes: called basic blocks. Each block
consists of straight-line code ending
(possibly) in a branch.

•Edges: An edge A → B means that
control could flow from A to B.

•There is one unique entry node and one
unique exit node.

Control-Flow Graph (CFG)

ENTRY

EXIT

int foo() {
 printf(“Boo!”);
 }

 printf(“Boo!”);

ENTRY

EXIT

int foo() {
 x=1;
 y=2;
 printf(x+y);
 }

x=1;
y=2;
printf(x+y);

ENTRY

EXIT

int foo() {
 read(x);
 if (x>0)
 printf(x);
 }

x=1;
if (x>0) goto B2

printf(x);

B0:

B1:

B2:

B3:

int foo() {
 read(x);
 if (x>0)
 printf(x);
 else
 printf(x+1);
 }

ENTRYB0:

x=1;
if (x>0) goto B2

B1:

EXITB3:

printf(x);B2: printf(x+1);

B4:

int foo() {
 x=10;
 while (x>0){
 printf(x);
 x=x-1;
 }
}

ENTRYB0:

x=10;
if (x<=0) goto B3

B1:

EXIT
B3:

printf(x);
x=x-1;
goto B1;

B2:

1.Mark every instruction which
can start a basic block as a
leader:
1. the first instruction
2. a target of a branch
3. any instruction following a

conditional branch
2.A basic block: the instructions
from a leader up to, but not
including, the next leader.

3.Add an edge A!B if A ends with
a branch to B or can fall
through to B.

X ← 20;
while (X<10){
 X←X-1;
 A[X]←10;
 if (X=4)
 X←X-2;
};
Y←X+5;

Exercise!
1: X←20
2: if X>=10 goto (8)
3: X←X-1
4: A[X]←10
5: if X!=4 goto (7)
6: X←X-2
7: goto (2)
8: Y←X+5

Convert to CFG!
First simplify!

Work with
your friends!!!

←

Disassembly

Disassemble

011010101010
010101011111
000011100101

•Attackers: prefer looking
at assembly code than
machine code

int foo() {
 … … … …
}

foo.c

foo.exe

add r1,r2,r3
ld r2,[r3]
call bar
cmp r1,r4
bgt L2

Compile

objdump -d i/bin/ls | less

Static Disassembly

•Address •Assembly•Code
•bytes

1. 0xd78: 55 push %rbp
2. 0xd79: 48 89 e5 mov %rsp,%rbp
3. 0xd7c: 48 83 c7 68 add $0x68,%rdi
4. 0xd80: 48 83 c6 68 add $0x68,%rsi
5. 0xd84: 5d pop %rbp
6. 0xd85: e9 26 38 00 00 jmpq 1000045b0
7. 0xd8a: 55 push %rbp
8. 0xd8b: 48 89 e5 mov %rsp,%rbp
9. 0xd8e: 48 8d 46 68 lea 0x68(%rsi),%rax
10. 0xd92: 48 8d 77 68 lea 0x68(%rdi),%rsi
11. 0xd96: 48 89 c7 mov %rax,%rdi
12. 0xd99: 5d pop %rbp
13. 0xd9a: e9 11 38 00 00 jmpq 1000045b0
14. 0xd9f: 55 push %rbp

55 48 89 e5 48 83 c7
68 48 83 c6 68 5d e9
26 38 00 00 55 48 89
e5 48 89 e5 48 8d 46
68 48 89 c7 5d e9 11
38 00 00 55

Disassemble

•Disassembly is hard! And
sometimes disassemblers
get it wrong!

add r1,r2,r3
ld r2,[r4]
call bar
mul r1,r4
bgt L2

•In general, this is always the case:
program analysis is more or less
precise.

55 48 89 e5 48 83
c7 68 48 83 c6 68
5d e9 26 38 00 00
55 48 89 e5 48 89
e5 48 8d 46 68 48
89 c7 5d e9 11 38
00 00 55

•There are two general algorithm ideas
for disassembly:

1. Linear Sweep Traversal

2. Recursive Traversal

•At times, both with fail.

•We typically add heuristics to improve
precision.

1. push %rbp
2. mov %rsp,%rbp
3. add $0x68,%rdi
4. add $0x68,%rsi
5. pop %rbp
6. jmpq 1000045b0
7. push %rbp

55 48 89 e5 48 83 c7 68
48 83 c6 68 5d e9 26 38
00 00 55

Linear
sweep
disassembly

1. 0xd78: push %rbp
2. 0xd79: mov %rsp,%rbp
3. 0xd7c: add $0x68,%rdi
4. 0xd80: add $0x68,%rsi
5. 0xd84: pop %rbp
6. 0xd85: jmpq 0x45b0
7. 0xd8a: push %rbp

55 48 89 e5 48 83 c7 68
48 83 c6 68 5d e9 26 38
00 00 55

Recursive
traversal
disassembly

0x45b0
0xd8a
0xd78

Stack

1. 0xd78: push %rbp
2. 0xd79: mov %rsp,%rbp
3. 0xd7c: add $0x68,%rdi
4. 0xd80: add $0x68,%rsi
5. 0xd84: pop %rbp
6. 0xd85: jmpq 0x45b0
7. 0xd8a: .byte 0x55
8. 0xd8b: mov %rdi,%rbp

0x55 ≣ push %rbp!!!

Exercise!

• How would a linear sweep disassembly
handle this code?

1. 0xd78: push %rbp
2. 0xd79: mov %rsp,%rbp
3. 0xd7c: add $0x68,%rdi
4. 0xd80: add $0x68,%rsi
5. 0xd84: pop %rbp
6. 0xd85: jmpr %rdi
7.0xd8b: mov %rdi,%rbp

Indirect jump!

Exercise!

• How would a recursive traversal disassembly
handle this code?

Questions?

