Software Protection Research

ISSISP 2017 — Program Analysis

Christian Collberg

Department of Computer Science
University of Arizona

hitp://collberg.cs.arizona.edu

collberg@gmail.com

Supported by NSF grants 1525820 and 1318955 and
by the private foundation that shall not be named

http://collberg.cs.arizona.edu
mailto:collberg@gmail.com?subject=

What is Program Analysis?
Control Flow Analysis

Discussion

What is Program
Analysis?

Program Analysis

int foo() {
int x;
int* y;
printf (x+*y);

®Who calls foo?
®Who does foo call?
¢|s x ever initialized?
+Can y ever be null?
+What will foo print?

_ : heed to
analyze their program to
prOteCt it! ¢ Who calls foo?

¢ Who does foo call?

¢ |s x ever initialized?
¢ Can y ever be null?

¢ What will foo print?

. : heed to

analyze our program to
mOdify it! ¢ Who calls foo?

¢ Who does foo call?
¢ |s x ever initialized?
¢ Can y ever be null?

¢ What will foo print?

¢ Extract Code!

¢ Discover Algorithms!
¢ Find Design!

¢ Find Keys!

¢ Modify Code!

Two kinds of analyses:

. collect
information about a program by
studying its code;

. collect
information from executing the
program.

. collect information about
a program by studying its code

Static
Analysis

l.e. we analyze

the Source or ¢ Who calls foo?
o ¢ Who does foo call?
blnal‘y COde Of the ¢ |s x ever initialized?

¢ Can y ever be null?

program itself. ¢ What will foo print?

. collect information
from executing the program.

Program
inputs

l.e. we analyze a
trace Of the ¢ Who calls foo?
program as it is ¢ Who does foo call

¢ |s x ever initialized?

running on some ¢ Can y ever be null?

¢ What will foo print?

particular input

Static Analyses

. . representation of
(possible) control-flow in functions.

. . representation of (possible)
function calls.

. . turn raw executables into
assembly code.

. . turn raw assembly code
into source code.

Dynamic Analyses

. what path does the program
take?

. which functions/system calls
get executed?

. what gets executed the most?

Control Flow
Analysis

Control-Flow Graph (CFG)

e A way to represent the possible flow of
control inside a function.

. . called Each block
consists of straight-line code ending
(possibly) in a branch.

. : An edge A — B means that
control could flow from A to B.

e There is one unique and one
unique

ENTRY

int foo() {
printf (“"Bool"”) - printf (“Boo!"”);

EXIT

int foo() {

printf(x+y);

ENTRY

x=1;

y=2;
printf (x+y);

EXIT

ENTRY

int foo() {
read(x) ’ }iil;x>0) goto B2
1f (x>0)

printf (x);

EXIT

printf (x);

ENTRY

int foo() {
read(x);
1f (x>0)
printf(x);

x=1;

if (x>0) goto B2

printf(x); printf(x+1);

else
printf (x+1);

EXIT

ENTRY

x=10;
if (x<=0) goto B3

int foo() {
x=10;
while (x>0){
printf(x);

printf(x);
Xx=x-1;
goto Bl;

X=x-1;

EXIT

l.Mark every 1instruction which
can start a basic block as a
leader:
1. the first instruction
2.a target of a branch
3. any instruction following a

conditional branch

2.A basic block: the instructions
from a leader up to, but not
including, the next leader.

3.Add an edge A-»B 1f A ends with

a branch to B or can fall
through to B.

Exercise!

X <« 20;
while (X<10){
Xe—X-1;
A[X]+10;

: X<20

: 1f X>=10 goto (8)
: XeX-1

: A[X]+10

: 1f X!=4 goto (7)
: X&X-2

: goto (2)

: Y&X+5

1f (X=4)
Xe=X=-2:

00O 4O O & W IN K

b7
Y—X+5;

Disassembly

. : prefer looking
at assembly code than
machine code

Static Disassembly

Address Code

Assembly

0x
0x
0x
0x
0x
0x
0x
0x
0x , 3rax
0x ,3rsi
0x
0xd
O0xd9a: e9 11 38 00 00 1000045b0
0xd9f: 55 push 3rbp

00 ~J o O b= W DN K-
e e e e o e o o

L)
W N R O
e e e o

|—\
N
[]

eDisassembly i1s hard! And
sometimes disassemblers
get it wrong!

LY
”@’C

A
4 \

eIn general, this is always the case:
program analysis is more or less
precise.

e There are two general algorithm ideas
for disassembly:

1. Linear Sweep Traversal
2. Recursive Traversal
«At times, both with fail.

« We typically add heuristics to improve
precision.

~N O O = W N -

T — e -—ﬂ

] |

. /push <orbp
mov orsp,orb-

e = = =
e e P —

- ‘ orb

push __ 8rbp

l

1!
) .0 o orl

i

1‘

y">1oooi45.o

= |
"»
b

B

H

Linear
sweep
disassembly

~N O O & W N -

al push %rbp

3! push $rbp
: mov 3rsp,%rbp

add $0x68,%rdi
add $0x68,%rsi
pop 3rbp

jmpq |

Recursive
traversal
disassembly

Stack
O0xd8a

06195 30

Exercise!

srbp

3rsp, 3rbp
S0x68, %3rdi
S0x68,%rsi

Srbp
. byte 0x55 |

- How would a disassembly
handle this code?

Exercise!

Srbp

3rsp, srbp
S0x68,%rd1i
S0x68,%rs1i

Oxd8b movﬁﬁordl,krbp‘:J

- How would a disassembly
handle this code?

o o

uestions?

