
Advanced	
Anti-Deobfuscation

Bjorn	De	Sutter

ISSISP	2017	– Paris

1

About	me

• Research	domain:	system	software
• compilers,	binary	rewriting	tools,	whole	program	optimization	(binary	&	
Java),	virtualization,	run-time	environments

• improve	programmer	productivity	by	means	of	automation
• apply	tools	for	different	applications

• obfuscation,	diversity,	mitigating	side	channels	and	fault	injection,	...
• protect	against	exploitation	of	vulnerabilities	(multi-variant	execution)
• generating	code	for	accelerators

• Also	worked/spent	time	at

• Interrupts	enabled	

2

About	me

3
Data Hiding Algorithm Hiding Anti-Tampering Remote Attestation Renewability

SafeNet use case

Gemalto use case

Nagravision use case

Protected SafeNet use case

Protected Gemalto use case

Protected Nagravision use case

Software

Protection

Tool Flow

ASPIRE Framework

Decision Support System

Software Protection
Tool Chain

http://www.aspire-fp7.eu

Lecture	Overview
1. Basic	Attacks

• attacks	on	what?
• basic	attack	tools	&	techniques

4

2. Defenses
• anti-anything

3. Advanced	Automated	Attacks
• generic	deobfuscation
• symbolic	execution

4. Defenses
• anti-even-more

What	is	being	attacked?

5

Asset category Security
Requirements Examples of threats

Private data
(keys, credentials, tokens,
private info)

Confidentiality
Privacy
Integrity

Impersonation, illegitimate authorization
Leaking sensitive data
Forging licenses

Public data
(keys, service info) Integrity Forging	licenses

Unique data
(tokens, keys, used IDs)

Confidentiality
Integrity

Impersonation
Service disruption,	illegitimate	access

Global data (crypto & app
bootstrap keys)

Confidentiality
Integrity

Build	emulators
Circumvent	authentication	verification	

Traceable data/code
(Watermarks, finger-prints,
traceable keys)

Non-repudiation Make identification impossible

Code (algorithms, protocols,
security libs) Confidentiality Reverse engineering

Application execution
(license checks & limitations,
authentication & integrity
verification, protocols)

Execution
correctness Integrity

Circumvent security features (DRM)
Out-of-context use, violating license terms

6

What	is	being	attacked?

ASSET

PROTECTION	1

PROTECTION	2

PROTECTION	3

PROTECTION	4

PROTECTION	5

PROTECTION	6

PROTECTION	7

PROTECTION	8ADDITIONAL	CODE

1.	Attackers	aim	for	assets,	layered	protections	are	only	obstacles
2.	Attackers	need	to	find	assets	(by	iteratively	zooming	in)
3.	Attackers	need	tools	&	techniques	to	build	a	program	representation,		
to	analyze,	and	to	extract	features

4.	Attackers	iteratively	build	strategy	based	on	experience	and	
confirmed	and	revised	assumptions,	incl.	on	path	of	least	resistance

5.	Attackers	can	undo,	circumvent,	or	overcome	protections
with	or	without	tampering	with	the	code

Basic	Attack	Techniques	

• Static attack	steps:	without	executing	the	code
• symbolic	information
• graph	representations	of	program

• Dynamic attack	steps:	observing	execution
• all	kinds	of	hooks
• start	and	intervene	at	interfaces
• observe	features	and	patterns	of	program	execution	(traces)

• Hybrid attack	steps:	combination	of	both
• e.g.:	build	graphs	of	(unpacked)	code	observed	during	
execution

7

Disassemblers	- 1
• IDA	Pro
• Binary	Ninja
• angr

• Far	from	perfect
• incomplete	disassembly
• incorrect	graphs	(control	flow,	call	graphs)

• Flexible	and	interactive
• linear	sweep,	recursive	descent,	heuristical and	manual	disassembly
• GUI	
• code	annotation
• plug-ins	and	scripts

8

Disassemblers	- 1
• IDA	Pro
• Binary	Ninja

• Far	from	perfect
• incomplete	disassembly
• incorrect	graphs	(control	flow,	call	graphs)

• Flexible	and	interactive
• GUI	
• annotation
• Plug-ins	and	scripts

9

Disassemblers	- 2

• Static	&	hybrid	attacks
• Rely	on	many	underlying	assumptions
• Library	detection

• F.L.I.R.T
• Diffing	tools

• BinDiff
• Custom	tools

• detect	patterns
• undo	obfuscations
• data	flow	analysis

• Supports	code	editing
• Interfaces	with	(remote)	debuggers

10

• Static	&	hybrid	attacks
• Library	detection

• F.L.I.R.T

• Diffing	tools
• BinDiff

• Custom	tools
• detect	patterns
• undo	obfuscations
• data	flow	analysis

Disassemblers	- 2

11

Disassemblers	- 2

12

Disassemblers	- 3

13

• Decompiler

Debuggers	- 1

• GDB
• OllyDbg

• Scriptable

• Support	tampering
• alter	processor	state	(incl.	program	counter)
• alter	memory	contents
• alter	code
• used	for	out-of-context	execution

14

Debuggers	- 1

• GDB
• OllyDbg

• Scriptable
• Used	for	tampering

• alter	processor	state	(incl.	program	counter)
• alter	memory	contents
• alter	code
• used	for	out-of-context	execution

15

Debuggers	- 2

• Used	for	program	understanding
• Used	for	zooming	in	on	relevant	code

• Continuous	iterative	refinement	of	scripts

• Low	overhead	with	hardware	breakpoints
• High	overhead	with	software	breakpoints

• Requires	tampering

16

Emulation	&	Instrumentation		

• QEMU
• Pin
• Valgrind
• DynInst
• ltrace

• Used	to	collect	traces
• To	identify	patterns	and	points	of	interest

• Used	like	a	debugger
• Iterative	refinement	of	scripts
• But	not	interactive

17

Software	Tampering
• Editing	the	binary
• Alter	running	process	state	(CPU,	memory)
• Intervene	at	interfaces

• system	calls
• library	calls
• network	activities
•

• Custom	binaries	to	invoke	library	APIs
• Aforementioned	tools
• Cheat	Engine

• all	kinds	of	reverse	engineering	aids	(pointer	chaining)
18

Pointer	chaining

19

struct	player

bool	visible

Pointer	chaining

20

struct	player

bool	visible

stack

play()

Pointer	chaining

21

struct	player

bool	visible

struct	game

((ESP(play())-0x16)+0x4)+0x28

Pointer	chaining

22

Lecture	Overview
1. Basic	Attacks

• attacks	on	what?
• basic	attack	tools	&	techniques

23

2. Defenses
• anti-anything

3. Advanced	Automated	Attacks
• generic	deobfuscation
• symbolic	execution

4. Defenses
• anti-even-more

Anti-tampering

• Code	guards	(code	integrity)
• hashes	over	code	regions

• State	inspection
• check	for	existing	invariants
• inject	additional	invariants
• for	data	integrity	and	control	flow	integrity

• Basic	control	flow	integrity
• check	return	addresses
• check	stack	frames

24

Remote	attestation

25

D1.04 – Reference Architecture v2.1

ASPIRE D1.04 v2.1 PUBLIC Page 48 of 99

actions to change the behaviour of the application. These actions may vary according

the policy configured for the application.

Conceptually, these components cooperate as depicted in the workflow diagram depicted in

Figure 17, and further detailed in the steps following the figure.

Delay	Component

Original	Application	logic

Attestator

1

Verifier

2

Update
Functions

3

Delay	Data	Structures

54

Query	
Functions

Reaction

Figure 17 – Anti-tamper components

Seq# Operation description

1 The attestator routine is invoked.

Details: An attestator routine is invoked that returns the attestation report in the form of some

data. It should be noted that the attestator can be a single monolithic routine, but it can also

consist of a collection of smaller routines that are invoked one after the other to iteratively

compute an attestation report. In the latter case, the routines can actually also be in-lined into

the program and hence be indistinguishable from the application code.

2 A verifier is invoked.

Details: In step 2, which will typically be executed immediately after step 1, the attestation

report is verified. This can occur locally, but it the verification can also be offloaded (completely

or partially) onto a secure server. By offloading the verification to a server beyond the reach of

an attacker, the attacker cannot learn how to fabricate correct responses by studying the

verification routine. In practice, the attestator and verifier can also be combined into one

routine. Alternatively, their invocation can be pulled apart to some degree, in order to hide the

dependency between them. However, there always has to remain a guarantee that whenever

the attestator routine is invoked, so is the verifier routine, and vice versa.

3 Update the tamper detection status.

Details: In step 3, which typically will follow immediately after step 2, the result of verification

(the verdict) is used to encode the tamper detection status of the application. Based on the

verdict, an update function is invoked that alters the delay data structures to encode that some

form of tampering was or was not detected.

It is important to note here that the update functions can also be invoked from random places

in the original program, as long as those random invocations do not alter the information

regarding detected tampering encoded in the data structures. This is important because such

random updates will give the delay data structures the appearance of being integral data

attestators:
- code	guards
- timing
- data	integrity
- control	flow	integrity

verification:	
- local	vs.	remote
- prevent	replay	attacks

reaction:	
- abort
- corruption
- notify	server	(block	player)
- graceful	degradation
- lower	quality

delay	reaction:	
- attacker	sees	symptom
- hide	relation	with	cause!

Anti-disassembly
• Hide	code

• packers,	virtualization,	download	code	on	demand,	self-modifying	
code

• Junk	bytes
• Indirect	control	flow	transfers
• Jumps	into	middle	of	instructions
• Code	layout	randomization
• Overlapping	instructions
• Exploit	known	heuristics

• continuation	points
• patterns	for	function	prologues,	epilogues,	calls,	...

Often,	wrong	information	is	worse	than	no	information.

26

Anti-disassembly	examples

27

0x123a: jmp 0xabca;
...

0xabca: addl #44,eax

0x123a: call	 0xabca;
...

0xabca: pop ebx;
addl #44,eax

obfuscation

Example	1

Example	2

0x123a: call		 0xabca;
...

0xabca: ...
ret

0x123a: push	 *(0xc000)
jmp 0xabca
pop	 eax
...

0xabca: ...
jmp *(esp)

0xc000: 0x12424

obfuscation

Anti-decompilation

Exploit	semantic	gap	between	source	code	and	
assembly	code	or	bytecode

• strip	unnecessary	symbol	information

• rename	identifiers	(I,l,L,1)
• goto spaghetti
• disobey	constructor	conventions
• disobey	exception	handling	conventions

28

Anti-decompilation example

29

pre();
try{
 might_throw_exception();
catch(Exception e){
 handle_exception();
}
post();

pre();
flag = 1

flag = 0
might_throw_exception();

if(flag)

then

on
exception

handle_exception();

else

fall-
through

post();

fall-
through

Figure 3.8: Example of combining try blocks with their catch blocks [BH07]. In the transformed
code fragment, the try and catch block both start at the same instruction (in green).

The try-catch construct in the original code is replaced by an if-construct that either
guides control to the code in the try-block, or the catch-block based on the value of a flag.
The first instruction of the then block resets the flag, such that if further code in the then
block throws an exception and the if-statement is re-evaluated, control flows through to the
code in the else block where the exception handler is located. Rewriting the code in this way
allows both the try-block and the catch-block to start at the same instruction.

3.4.5 Indirecting if instructions

The indirecting if instructions transformation takes advantage of the fact that goto statements
are not valid in Java source code. This transformation looks for different if -statements and
indirects them by means of goto instructions. These goto instructions are then wrapped in a
try-block so they cannot be removed without statically proving that an exception can never be
thrown within the try-block. Being unable to remove the goto statements, most decompilers
will struggle in generating correct Java source code.

...
if_<cond_a> target_a
...
if_<cond_b> target_b
...
if_<cond_c> target_c
...

...
if_<cond_a> target_goto_a
...
if_<cond_b> target_goto_b
...
if_<cond_c> target_goto_c
...

try{
 target_goto_a: goto target_a
 target_goto_b: goto target_b
 target_goto_c: goto target_c
}
catch(Exception e){}

Figure 3.9: Pseudo-code example of indirecting if instructions. Each if instruction’s target is directed
to a goto which transfers control to the if instruction’s original target.

An example of the indirecting if instructions transformation is given in Figure 3.9. This
figure indicates how each if-statement on the left is indirected by means of a goto statement.
As shown in the figure, it is possible to wrap different goto statements in the same try-block.

41

pre();
try{
 might_throw_exception();
catch(Exception e){
 handle_exception();
}
post();

pre();
flag = 1

flag = 0
might_throw_exception();

if(flag)

then

on
exception

handle_exception();

else

fall-
through

post();

fall-
through

Figure 3.8: Example of combining try blocks with their catch blocks [BH07]. In the transformed
code fragment, the try and catch block both start at the same instruction (in green).

The try-catch construct in the original code is replaced by an if-construct that either
guides control to the code in the try-block, or the catch-block based on the value of a flag.
The first instruction of the then block resets the flag, such that if further code in the then
block throws an exception and the if-statement is re-evaluated, control flows through to the
code in the else block where the exception handler is located. Rewriting the code in this way
allows both the try-block and the catch-block to start at the same instruction.

3.4.5 Indirecting if instructions

The indirecting if instructions transformation takes advantage of the fact that goto statements
are not valid in Java source code. This transformation looks for different if -statements and
indirects them by means of goto instructions. These goto instructions are then wrapped in a
try-block so they cannot be removed without statically proving that an exception can never be
thrown within the try-block. Being unable to remove the goto statements, most decompilers
will struggle in generating correct Java source code.

...
if_<cond_a> target_a
...
if_<cond_b> target_b
...
if_<cond_c> target_c
...

...
if_<cond_a> target_goto_a
...
if_<cond_b> target_goto_b
...
if_<cond_c> target_goto_c
...

try{
 target_goto_a: goto target_a
 target_goto_b: goto target_b
 target_goto_c: goto target_c
}
catch(Exception e){}

Figure 3.9: Pseudo-code example of indirecting if instructions. Each if instruction’s target is directed
to a goto which transfers control to the if instruction’s original target.

An example of the indirecting if instructions transformation is given in Figure 3.9. This
figure indicates how each if-statement on the left is indirected by means of a goto statement.
As shown in the figure, it is possible to wrap different goto statements in the same try-block.

41

pre();
try{
 might_throw_exception();
catch(Exception e){
 handle_exception();
}
post();

pre();
flag = 1

flag = 0
might_throw_exception();

if(flag)

then

on
exception

handle_exception();

else

fall-
through

post();

fall-
through

Figure 3.8: Example of combining try blocks with their catch blocks [BH07]. In the transformed
code fragment, the try and catch block both start at the same instruction (in green).

The try-catch construct in the original code is replaced by an if-construct that either
guides control to the code in the try-block, or the catch-block based on the value of a flag.
The first instruction of the then block resets the flag, such that if further code in the then
block throws an exception and the if-statement is re-evaluated, control flows through to the
code in the else block where the exception handler is located. Rewriting the code in this way
allows both the try-block and the catch-block to start at the same instruction.

3.4.5 Indirecting if instructions

The indirecting if instructions transformation takes advantage of the fact that goto statements
are not valid in Java source code. This transformation looks for different if -statements and
indirects them by means of goto instructions. These goto instructions are then wrapped in a
try-block so they cannot be removed without statically proving that an exception can never be
thrown within the try-block. Being unable to remove the goto statements, most decompilers
will struggle in generating correct Java source code.

...
if_<cond_a> target_a
...
if_<cond_b> target_b
...
if_<cond_c> target_c
...

...
if_<cond_a> target_goto_a
...
if_<cond_b> target_goto_b
...
if_<cond_c> target_goto_c
...

try{
 target_goto_a: goto target_a
 target_goto_b: goto target_b
 target_goto_c: goto target_c
}
catch(Exception e){}

Figure 3.9: Pseudo-code example of indirecting if instructions. Each if instruction’s target is directed
to a goto which transfers control to the if instruction’s original target.

An example of the indirecting if instructions transformation is given in Figure 3.9. This
figure indicates how each if-statement on the left is indirected by means of a goto statement.
As shown in the figure, it is possible to wrap different goto statements in the same try-block.

41

pre();
try{
 might_throw_exception();
catch(Exception e){
 handle_exception();
}
post();

pre();
flag = 1

flag = 0
might_throw_exception();

if(flag)

then

on
exception

handle_exception();

else

fall-
through

post();

fall-
through

Figure 3.8: Example of combining try blocks with their catch blocks [BH07]. In the transformed
code fragment, the try and catch block both start at the same instruction (in green).

The try-catch construct in the original code is replaced by an if-construct that either
guides control to the code in the try-block, or the catch-block based on the value of a flag.
The first instruction of the then block resets the flag, such that if further code in the then
block throws an exception and the if-statement is re-evaluated, control flows through to the
code in the else block where the exception handler is located. Rewriting the code in this way
allows both the try-block and the catch-block to start at the same instruction.

3.4.5 Indirecting if instructions

The indirecting if instructions transformation takes advantage of the fact that goto statements
are not valid in Java source code. This transformation looks for different if -statements and
indirects them by means of goto instructions. These goto instructions are then wrapped in a
try-block so they cannot be removed without statically proving that an exception can never be
thrown within the try-block. Being unable to remove the goto statements, most decompilers
will struggle in generating correct Java source code.

...
if_<cond_a> target_a
...
if_<cond_b> target_b
...
if_<cond_c> target_c
...

...
if_<cond_a> target_goto_a
...
if_<cond_b> target_goto_b
...
if_<cond_c> target_goto_c
...

try{
 target_goto_a: goto target_a
 target_goto_b: goto target_b
 target_goto_c: goto target_c
}
catch(Exception e){}

Figure 3.9: Pseudo-code example of indirecting if instructions. Each if instruction’s target is directed
to a goto which transfers control to the if instruction’s original target.

An example of the indirecting if instructions transformation is given in Figure 3.9. This
figure indicates how each if-statement on the left is indirected by means of a goto statement.
As shown in the figure, it is possible to wrap different goto statements in the same try-block.

41

Batchelder,	Michael,	and	Laurie	Hendren.	"Obfuscating	Java:	the	most	pain	for	the	least	gain."	In	
Compiler	Construction,	pp.	96-110.	Springer	Berlin	Heidelberg,	2007

Anti-debugging

30

• Option	1:	check	environment	for	presence	debugger

• Option	2:	prevent	debugger	to	attach
• OS	&	hardware	support	at	most	one	debugger	per	process
• occupy	one	seat	with	custom	“debugger”	process	
• make	control	&	data	flow	dependent	on	custom	debugger

• anti-debugging	by	means	of	self-debugging

Self-Debugging

31

function	1

function	2

function	3

mini	
debugger

Self-Debugging

32

function	1

function	2

function	3

mini	
debugger

function	1

function	2

function	3

mini	
debugger

Self-Debugging

33

function	1

function	2

function	3

mini	
debugger

function	1

function	2

function	3

mini	
debugger

process	1045 process	3721

debuggee debugger

Self-Debugging

34

function	1

function	2

function	3

mini	
debugger

function	1

function	2

function	3

mini	
debugger

process	1045 process	3721

debuggee debugger

function	2a function	2b

Anti-emulation

• Emulators	are	buggy	– incomplete
• Virtual	environments	are	not	real

• Johanna	Rutkowska
• Blue	pill
• Red	pill

35

Lecture	Overview
1. Basic	Attacks

• attacks	on	what?
• basic	attack	tools	&	techniques

36

2. Defenses
• anti-anything

3. Advanced	Automated	Attacks
• generic	deobfuscation
• symbolic	execution

4. Defenses
• anti-even-more

Generic	Deobfuscation (Yadegari et	al	IEEE	S&P	2015)

37

• no	obfuscation-specific	assumptions
• treat	programs	as	input-to-output	transformations
• use	semantics-preserving	transformations	to	simplify	execution	traces

• dynamic	analysis	to	handle	runtime	unpacking

Taint	analysis
(bit-level)

Control	flow	
reconstruction

Semantics-
preserving

transformations	/	
simplifications

in
pu

t
pr
og
ra
m

co
nt
ro
l		
flo

w
		

gr
ap
h

map	flow	of	values
from	input	to	output

reconstruct	logic	of
simplified	computation

Generic	Deobfuscation (Yadegari et	al	IEEE	S&P	2015)

38

un
pa
ck

un
pa
ck

output

output

input

input

instructions	“tainted”	as	propagating	
values	from	input	to	output

input-to-output	computation
(further	simplified)

us
ed

	to
	c
on

st
ru
ct
	c
on

tr
ol
	fl
ow

	g
ra
ph

Generic	Deobfuscation (Yadegari et	al	IEEE	S&P	2015)

39

• Quasi-invariant	locations:	locations	that	have	the	same	value	at	each	use.
• Their transformations:

• Arithmetic	simplification	
• adaptation	of	constant	folding	to	execution	traces
• consider	quasi-invariant	locations	as	constants
• controlled	to	avoid	over-simplification

• Control	simplification
• E.g.,	convert	indirect	jump	through	a	quasi-invariant	location	into	a	direct	jump

• Data	movement	simplification
• use	pattern-driven	rules	to	identify	and	simplify	data	movement.

• Dead	code	elimination
• need	to	consider	implicit	destinations,	e.g.,	condition	code	flags.

Generic	Deobfuscation (Yadegari et	al	IEEE	S&P	2015)

40

original obfuscated	with	Themida (cropped) deobfuscated

Symbolic	Execution

41

effective	because	most	obfuscations	implement	semantics	that	do	not	involve	input	

Lecture	Overview
1. Basic	Attacks

• attacks	on	what?
• basic	attack	tools	&	techniques

42

2. Defenses
• anti-anything

3. Advanced	Automated	Attacks
• generic	deobfuscation
• symbolic	execution

4. Defenses
• anti-even-more

Anti-taint	analysis

• tainting	all	data	with	artificial	computations

• hiding	data	dependencies	through	covert	channels
• time
• system	state
• anything	not	normally	checked	by	analysis

43

Obfuscations	with	varying,	input-dependent	
behavior	(Banescu et	al,	ACSAC	2016)

44

Listing 2: Range divider with 2 branches
1 if (x > 42)
2 z = x + y + w
3 else
4 z = (((x ^ y) + ((x & y) << 1)) | w) +
5 (((x ^ y) + ((x & y) << 1)) & w);

Listing 3: Program with loop
1 unsigned char *str = argv [1];
2 unsigned int hash = 0;
3 for(int i = 0; i < strlen(str); str++, i++) {
4 hash = (hash << 7) ^ (*str);
5 }
6 if (hash == 809267) printf("win\n");

code characteristics of the original program. EncL and ISub
are not effective against symbolic execution. AddO and BCF
have a mild effect on the slowdown. EncA slows down sym-
bolic execution due to the larger size of SMT queries. Flat
and CFF slow down symbolic execution due to the larger
number of SMT queries issued to the solver. Virt slows down
symbolic execution due to the high number of fetch-decode-
dispatch instructions added. The results also indicate in
which order obfuscation transformations should be applied
to increase effectiveness. None of these obfuscation trans-
formations add input-dependent paths to the programs.

In § 3.3 we have symbolically executed another set of
programs obfuscated with 5 representative transformations
from Tigress used in § 3.2. Transformations from Obfusca-
tor LLVM were not used in § 3.3 because they had similar
effects as their corresponding transformations from Tigress.
In this experiment we compared the performance of different
symbolic execution engines to find test cases that lead to a
certain (difficult to reach) path in the obfuscated programs.
We observed that KLEE is most effective followed by angr.

We do not know if these results generalize for all possible
programs. However, we believe that they have some degree
of generality due to the heterogeneity of our datasets and
the intuitive explanations we provide in our observations.

4. PROPOSED OBFUSCATION
The proposed obfuscation transformations are inspired

by observation 10 in Experiment 3 from § 3.2, i.e. branch
instructions added by control-flow obfuscation transforma-
tions do not depend on program inputs. Therefore, we
propose making branch instructions added by control-flow
obfuscation transformations dependent on program inputs
to increase the slowdown of symbolic execution. Making
such branch instructions input dependent may or may not
be effective for existing obfuscation transformations. For in-
stance, making the opaque predicates p added by Tigress in-
put dependent, causes KLEE to issue a query on the branch
condition corresponding to p. However, the SMT solver al-
ways determines that p or ¬p is unsatisfiable and does not
analyze the code in unfeasible paths. In the following we
propose two obfuscation transformations which introduce
feasible paths in the original program.

4.1 Range Dividers
Our first proposal is an obfuscation transformation called

range divider. Range dividers are branch conditions that
can be inserted at an arbitrary position inside a basic block,
such that they divide the input range into multiple sets.
In contrast to opaque predicates, range divider predicates
may have multiple branches, any of which could be true

Listing 4: Program from Listing 3 obfuscated with
range divider
1 unsigned char *str = argv [1];
2 unsigned int hash = 0;
3 for(int i = 0; i < strlen(str); str++, i++) {
4 char chr = *str;
5 if (chr > 42) {
6 hash = (hash << 7) ^ chr;
7 } else {
8 hash = (hash * 128) ^ chr;
9 }

10 }
11 if (hash == 809267) printf("win\n");

Listing 5: Program from Listing 3 obfuscated with
maximum number of branches of range divider
1 unsigned char *str = argv [1];
2 unsigned int hash = 0;
3 for(int i = 0; i < strlen(str); str++, i++) {
4 char chr = *str;
5 switch (chr) {
6 case 1: hash = (hash << 7) ^ chr;
7 break;
8 case 2: // obfuscated version of case 1
9 break;

10 ...
11 default: // obfuscated version of case 1
12 break;
13 }
14 }
15 if (hash == 809267) printf("win\n");

and false depending on program input. This will cause a
symbolic execution engine to explore all branches of a range
divider. In order to preserve the functionality property of
an obfuscator, we use equivalent instruction sequences in
all branches of a range divider predicate, as illustrated in
Listing 2. To prevent compiler optimizations from remov-
ing range divider predicates, due to equivalent code in their
branches, we employ software diversity (on the code of every
branch) via different obfuscation configurations, e.g. in List-
ing 2 we used EncodeArithmetic on the else branch. We have
experimented with all optimization levels of LLVM clang
and none of them remove range divider predicates if their
branches are obfuscated. On the downside, range dividers
increase the size of the program proportionally to the total
number of branches.

The effectiveness of a range divider predicate against sym-
bolic execution depends on: (1) number of branches of the
predicate, denoted ρ and (2) the number of times the predi-
cate is executed, denoted τ . More specifically, its number of
paths increases according to the function: ρτ . For example,
consider the program from Listing 3, which computes a value
(hash) based on its first argument (argv[1]) and outputs
“win”on the standard output if this value is equal to 809267.
It has an execution tree with 2 × strlen(argv[1]) paths.
The program in Listing 4 is obtained by obfuscating the pro-
gram from Listing 3 using divide range predicate with ρ = 2
branches. The resulting program has 2strlen(argv[1]) paths,
because the predicate is executed τ = strlen(argv[1])
times. We can further increase the number of paths by
adding more branches to the divide range predicate from
Listing 4. However, the number of possible branches is
upper-bounded by the cardinality of the type of the variable
used in the range divider. In the example from Listing 4
the maximum number of branches is 256 because variable
chr is of type char. Therefore, the maximum number of
branches in this example is achieved by a switch-statement

196

Listing 2: Range divider with 2 branches
1 if (x > 42)
2 z = x + y + w
3 else
4 z = (((x ^ y) + ((x & y) << 1)) | w) +
5 (((x ^ y) + ((x & y) << 1)) & w);

Listing 3: Program with loop
1 unsigned char *str = argv [1];
2 unsigned int hash = 0;
3 for(int i = 0; i < strlen(str); str++, i++) {
4 hash = (hash << 7) ^ (*str);
5 }
6 if (hash == 809267) printf("win\n");

code characteristics of the original program. EncL and ISub
are not effective against symbolic execution. AddO and BCF
have a mild effect on the slowdown. EncA slows down sym-
bolic execution due to the larger size of SMT queries. Flat
and CFF slow down symbolic execution due to the larger
number of SMT queries issued to the solver. Virt slows down
symbolic execution due to the high number of fetch-decode-
dispatch instructions added. The results also indicate in
which order obfuscation transformations should be applied
to increase effectiveness. None of these obfuscation trans-
formations add input-dependent paths to the programs.
In § 3.3 we have symbolically executed another set of

programs obfuscated with 5 representative transformations
from Tigress used in § 3.2. Transformations from Obfusca-
tor LLVM were not used in § 3.3 because they had similar
effects as their corresponding transformations from Tigress.
In this experiment we compared the performance of different
symbolic execution engines to find test cases that lead to a
certain (difficult to reach) path in the obfuscated programs.
We observed that KLEE is most effective followed by angr.
We do not know if these results generalize for all possible

programs. However, we believe that they have some degree
of generality due to the heterogeneity of our datasets and
the intuitive explanations we provide in our observations.

4. PROPOSED OBFUSCATION
The proposed obfuscation transformations are inspired

by observation 10 in Experiment 3 from § 3.2, i.e. branch
instructions added by control-flow obfuscation transforma-
tions do not depend on program inputs. Therefore, we
propose making branch instructions added by control-flow
obfuscation transformations dependent on program inputs
to increase the slowdown of symbolic execution. Making
such branch instructions input dependent may or may not
be effective for existing obfuscation transformations. For in-
stance, making the opaque predicates p added by Tigress in-
put dependent, causes KLEE to issue a query on the branch
condition corresponding to p. However, the SMT solver al-
ways determines that p or ¬p is unsatisfiable and does not
analyze the code in unfeasible paths. In the following we
propose two obfuscation transformations which introduce
feasible paths in the original program.

4.1 Range Dividers
Our first proposal is an obfuscation transformation called

range divider. Range dividers are branch conditions that
can be inserted at an arbitrary position inside a basic block,
such that they divide the input range into multiple sets.
In contrast to opaque predicates, range divider predicates
may have multiple branches, any of which could be true

Listing 4: Program from Listing 3 obfuscated with
range divider
1 unsigned char *str = argv [1];
2 unsigned int hash = 0;
3 for(int i = 0; i < strlen(str); str++, i++) {
4 char chr = *str;
5 if (chr > 42) {
6 hash = (hash << 7) ^ chr;
7 } else {
8 hash = (hash * 128) ^ chr;
9 }
10 }
11 if (hash == 809267) printf("win\n");

Listing 5: Program from Listing 3 obfuscated with
maximum number of branches of range divider
1 unsigned char *str = argv [1];
2 unsigned int hash = 0;
3 for(int i = 0; i < strlen(str); str++, i++) {
4 char chr = *str;
5 switch (chr) {
6 case 1: hash = (hash << 7) ^ chr;
7 break;
8 case 2: // obfuscated version of case 1
9 break;

10 ...
11 default: // obfuscated version of case 1
12 break;
13 }
14 }
15 if (hash == 809267) printf("win\n");

and false depending on program input. This will cause a
symbolic execution engine to explore all branches of a range
divider. In order to preserve the functionality property of
an obfuscator, we use equivalent instruction sequences in
all branches of a range divider predicate, as illustrated in
Listing 2. To prevent compiler optimizations from remov-
ing range divider predicates, due to equivalent code in their
branches, we employ software diversity (on the code of every
branch) via different obfuscation configurations, e.g. in List-
ing 2 we used EncodeArithmetic on the else branch. We have
experimented with all optimization levels of LLVM clang
and none of them remove range divider predicates if their
branches are obfuscated. On the downside, range dividers
increase the size of the program proportionally to the total
number of branches.
The effectiveness of a range divider predicate against sym-

bolic execution depends on: (1) number of branches of the
predicate, denoted ρ and (2) the number of times the predi-
cate is executed, denoted τ . More specifically, its number of
paths increases according to the function: ρτ . For example,
consider the program from Listing 3, which computes a value
(hash) based on its first argument (argv[1]) and outputs
“win”on the standard output if this value is equal to 809267.
It has an execution tree with 2 × strlen(argv[1]) paths.
The program in Listing 4 is obtained by obfuscating the pro-
gram from Listing 3 using divide range predicate with ρ = 2
branches. The resulting program has 2strlen(argv[1]) paths,
because the predicate is executed τ = strlen(argv[1])
times. We can further increase the number of paths by
adding more branches to the divide range predicate from
Listing 4. However, the number of possible branches is
upper-bounded by the cardinality of the type of the variable
used in the range divider. In the example from Listing 4
the maximum number of branches is 256 because variable
chr is of type char. Therefore, the maximum number of
branches in this example is achieved by a switch-statement

196

1.	RANGE	DIVIDER

Obfuscations	with	varying,	input-dependent	
behavior	(Banescu et	al,	ACSAC	2016)

45

2.	INPUT	INVARIANTS

1. inject	extra	inputs	into	programs
2. let	correct	execution	depend	on	invariant	properties	of	those	inputs

for	example:	feed	program	extra	key	to	decrypt	bytecode

(how	to	get	these	to	the	user	???)

