
1

Introduction to software
exploitation

ISSISP 2017

2

VM

https://drive.google.com/open?id=0B8bzF4YBu
s1kLTJSNlNWQjhsS1E (sha1sum:
36c32a596bbc908729ea9333f3da10918e24d767)

Login / pass: issisp / issisp

https://drive.google.com/open?id=0B8bzF4YBus1kLTJSNlNWQjhsS1E
https://drive.google.com/open?id=0B8bzF4YBus1kLTJSNlNWQjhsS1E

● Josselin Feist, josselin@trailofbits.com

● Mark Mossberg, mark@trailofbits.com

● Trail of Bits: trailofbits.com
○ Help to build safer software
○ R&D focused: use of the latest program analysis techniques

3

Who are we

mailto:josselin@trailofbits.com
mailto:mark@trailofbits.com
https://www.trailofbits.com/

4

Plan for Today

● Basic concepts of software exploitation
○ What is a buffer overflow
○ How to exploit it

● Two hands-on:
○ Simple buffer overflow to exploit, using debugger
○ More complex example, using symbolic execution

5

Program Vulnerabilities

● Programs contain tons of bugs
○ Some are benign
○ Some impact the security of the system: vulnerabilities

● How to find them:
○ Manual inspecting
○ Fuzzing

● Use of a vuln to corrupt the system = exploitation

6

Software Exploitation

● Why does it matter?
○ Attack: obvious reasons
○ Defense:

■ Knowing if a vulnerability is exploitable -> prioritization
■ Help to convince developers to fix the vulnerability

○ Other reasons: CTF, interesting low-level manipulation, ...

7

Recall X64

8

Source Code Versus Assembly Code

● Programs usually written in high-level languages
○ C/C++, java, python, ..

● Compilation: Source code → binary
○ High-level code → assembly code
○ Variables → memory locations

9

Source Code Versus Assembly Code

10

Program Variables

● Variables are split in sections:
○ Local variable: stack
○ Dynamic variable (malloc): heap
○ Others (constant, static,..) : data, rodata, ...

11

Program Variables

● Each function possesses its own ”stack frame”
● Stack is organized as LIFO
● It grows toward lower addresses (first element =

highest address)

12

Stack Frame Example

Before f2() call During f2()

13

Stack Frame Example

Two specific registers: RSP and RBP

14

Stack Frame Example

Array elements grow toward higher values (@buf[0] < @buf[1])

15

Stack Frame: Other usages

● The stack is used to store other elements
○ Function parameters
○ Saving registers during call: RBP and RIP

● Special register: RIP
● RIP points to the code that will be executed
● When a function returns, RIP needs to know where to

return

-> The stack stores data used for the control flow
execution

16

Stack Frame Example

When f2() is called During f2()

17

Buffer Overflow

18

Stack-Based Buffer overflow

● If we write more than 8 elements in buf, we overwrite
the stack, and thus the stored values

● When it happens:
○ Call to unsafe functions: strcpy, …
○ Call safer functions with a wrong size
○ Wrong number of loop iterations
○ ...

19

Buffer Overflow Example

Input = ‘AAAAAAAAAAA...AAA\0’

20

Control-Flow Hijacking

● The overflow rewrites the stored value of RIP
● You control RIP when the program returns
● Redirect the program execution flow wherever you

want:
○ Usually, use of shellcode = small assembly code executing

specific action (reading/writing file, …)
○ Goal for today: execute a specific function

21

Your goal

● Exploit the binary: /home/issisp/desktop/exo1/bof
● The subject: /home/issisp/desktop/exo1/subject.pdf

Goal: execute the function ‘print_secret’

22

Modern Exploitation

● Lots of protections against vulnerabilities:
○ Canary: a random value is put between stack frames, check if it

is changed during execution
○ DEP: the stack is no longer executable (harder to use shellcode)
○ ASLR: sections are randomized

● In modern OS, you find even more complicated
protections (EMET,...)

23

Second binary

24

Second binary

● $ cat crash.txt
1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

● $./vuln input.txt
Segmentation fault (core dumped)

● $ gdb ./vuln
 run input.txt

=> 0x400bfe: call rdx
RDX: 0x4582c3004582c300

25

Crash Analysis

● Not a crash on the return of a function
● call rdx, with rdx = strange value

○ Direct link between the value of rdx and the input not explicit
● Not trivial to know the root cause

○ Call to a direct user-controlled value?
○ Buffer overflow leading to rewriting function pointer?
○ Other vulnerability? (Use-after-free, ..)

26

Crash Analysis

● One common solution: reverse-engineer the binary to
understand the relation between the input and rdx

● The solution presented here: using dynamic symbolic
execution to build the exploit

27

Dynamic Symbolic Execution

28

Dynamic Symbolic Execution (DSE)

● DSE: an automated input generation technique.

● Key idea: execute the program, but consider some
variables as symbolic

29

DSE Example

30

DSE Example

a is symbolic, called a0

31

DSE Example

a is symbolic, called a0
a1 := a0 + 1

32

DSE Example

a is symbolic, called a0
a1 := a0 + 1
Two possibilities:

- a1 == 0x42
- a1 != 0x42

33

DSE Example

a is symbolic, called a0
a1 := a0 + 1
Two possibilities:

- a1 == 0x42
- a1 != 0x42

Two paths, represented as so-called path
predicates:

- a1 := a0 +1 ^ a1 == 0x42
- a1 := a0 +1 ^ a1 != 0x42

34

Path Predicate

● Once you represent a path as a path predicate:
○ Ask a solver to give a valuation of symbolic inputs

■ Generating the inputs of the path
■ Proof that the path is not feasible

○ Add new constraints on the path predicate
■ Invert a condition
■ Force specific value (e.g. buf[i], i can be > size of buf[]?)

35

DSE

● Large recent interest in security
● Academic & industrial interest

○ Angr, Binsec, KLEE, Mayhem, SAGE, Triton, etc.
○ Today: Manticore

● Young topic, still a lot of limitations
● Different use:

○ Path exploration
○ Crash analysis
○ Deobfuscation
○ ...

36

Manticore

● Dynamic Binary Analysis Tool
○ Symbolic Execution
○ Taint Analysis
○ Program Instrumentation

● CLI Tool/Python API
○ Generate inputs
○ Query satisfiability
○ Script custom analyses

● x86/64, ARMv7

github.com/trailofbits/manticore
$ pip install manticore

http://github.com/trailofbits/manticore
http://github.com/trailofbits/manticore

37

Second binary (cont.)

38

Your goal

● Use Manticore to know if you can exploit the crash to
call the function ‘print_secret’
○ You need an input leading to “rdx == @print_secret”

