
7/18/2017 ISSISP 2017- (C) Lakhotia 1

Malware Analysis

Arun Lakhotia

University of Louisiana at Lafayette, USA

Presented at ISSISP 2017, CNRS Gif Sur Yvette

Introduction

7/18/2017 ISSISP 2017- (C) Lakhotia 2

Professor of Computer Science Founder, CEO

Geolocation

7/18/2017 ISSISP 2017- (C) Lakhotia 3

7/18/2017 ISSISP 2017- (C) Lakhotia 4

Plan of talk

Malware detection in practice

Binary Analysis

Challenges in Binary Analysis

7/18/2017 ISSISP 2017- (C) Lakhotia 5

Malware detection

In Practice

What is Malware?

“Software that steals your data.

Software that destroys your data.

Software that abuses your machine.”

@Pinkflawd

7/18/2017 ISSISP 2017- (C) Lakhotia 6

Types of malware

Ransomware

Botnets

Password Stealers

Remote-Access-Trojans (RATs)

Click-jackers (stealing ad clicks)

Banking Trojans

SCADA disruptors

7/18/2017 ISSISP 2017- (C) Lakhotia 7

How to determine something is
malware?

Run it

Observe if it
steals or destroys your data

abuses your machine

7/18/2017 ISSISP 2017- (C) Lakhotia 8

Determining malware in practice

Individually testing each program on every
machine for maliciousness is not feasible
In reality:

Someone observes some unexpected activity
Traces activity to a program
Passes it on to a security expert
Expert analyzes to confirm
Creates a ‘profile’ of the program
Uses the ‘profile’ to detect other occurrences
of the malware

7/18/2017 ISSISP 2017- (C) Lakhotia 9

7/18/2017 ISSISP 2017- (C) Lakhotia 10

Malware Detection Process
(Theory)

Suspect Malicious: yes/no

Profile

Scanner
Malicious: yes/noFile/Message

IN THE WILD

AV LAB

7/18/2017 ISSISP 2017- (C) Lakhotia 11

Virus (Malware) Identification

Anti-Virus
Signature

Virus

Form - A
Antivirus scanners use

extracted patterns, or

“signatures” to identify

known malware.

7/18/2017 ISSISP 2017- (C) Lakhotia 12

Static Signature

Hex strings from virus variants
67 33 74 20 73 38 6D 35 20 76 37 61

67 36 74 20 73 32 6D 37 20 76 38 61

67 39 74 20 73 37 6D 33 20 76 36 61

Hex string for detecting virus
67 ?? 74 20 73 ?? 6D ?? 20 76 ?? 61

?? = wildcard

7/18/2017 ISSISP 2017- (C) Lakhotia 13

Dynamic Signature

Monitor a running program to detect
malicious behavior
Examples

Analyze audit trails
Look at patterns of system calls

Allows examination of only selected
testcases

Malware detection ecosystem
has a lot of sharing

7/18/2017 ISSISP 2017- (C) Lakhotia 14

Malware
Repositories

AV Vendor End customers

AV Vendor End customers
VirusTotal

Suspect files, daily volume

7/18/2017 ISSISP 2017- (C) Lakhotia 15

7/18/2017 ISSISP 2017- (C) Lakhotia 16

Multiple-Scanner Report

7/18/2017 ISSISP 2017- (C) Lakhotia 17

Malware Detection Process
(Practice)

Suspect Malicious: yes/no

Profile

Scanner
Malicious: yes/noFile/Message

IN THE WILD

AV LAB

Malware Definition: In practice

X is a malware:
if it creates a huge hue and cry

if P out of S AV scanners (on VT) say it
is malware

if some customer report it as suspect
and a security analyst confirms

7/18/2017 ISSISP 2017- (C) Lakhotia 18

How to perform Community
Voting

Use Hash(X) instead of X.

Hash(X) is malware if:
if P out of S AV scanners (on VT) say it
is malware

Community Voting is very rigid.

Cannot check for unseen malware.

7/18/2017 ISSISP 2017- (C) Lakhotia 19

Other challenges related to
Malware

Determine the objective of a malware

Determine the actors/creators

Disrupt botnets

7/18/2017 ISSISP 2017- (C) Lakhotia 20

BINARY ANALYSIS

7/18/2017 ISSISP 2017- (C) Lakhotia 21

Learn about you

Binary Analysis:

Level of knowledge: Level 1-5 (low-high)

How much do you care? Level 1-5

7/18/2017 ISSISP 2017- (C) Lakhotia 22

Binary Analysis – Why?

Debugging and Patching

Legacy Migration

Software Protection
Protecting IP

Software Cracking

Malicious Detection
Binary with undesired/unknown behavior

7/18/2017 ISSISP 2017- (C) Lakhotia 23

Binary Analysis Tools

STATIC

Hex editor

PE/ELF editors

Disassembler

Decompiler

Data/control flow

Abstract interpreter

Specialized checkers
Buffer overflow

Theorem provers

DYNAMIC

Debugger

Emulator

Run-time monitors

Network monitors

Fuzzers

MIXED – CONCOLIC
Combination of dynamic and
static

7/18/2017 ISSISP 2017- (C) Lakhotia 24

7/18/2017 ISSISP 2017- (C) Lakhotia 25

History of analysis tools

50+ years of program analysis (PA)
compilers, security analysis, …

25+ for reverse engineering (RE)
design recovery, reengineering, evolution, …

Fundamental theories, algorithms, methods
program decomposition, abstraction
disassembly, flow graphs
liveness, dependence, dominance, …
clustering, abstraction, visualization, comparison

26

object

parse

Compiler processing

create control

& data flow

generate code

7/18/2017 ISSISP 2017- (C) Lakhotia

27

result

disassemble

Binary analysis, adapted from
source

extract

procedures

extract control

& data flow

verify

property

7/18/2017 ISSISP 2017- (C) Lakhotia

28

Decomposing binaries

main() {
Max(0xA, 0xB);
Max(0xC, 0xD);

}

Max(int x, int y) {
if (x > y) return 1;
return 0;

}

L01: PUSH 0xA
L02: PUSH 0xB
L03: CALL L08
L04: PUSH 0xC
L05: PUSH 0xD
L06: CALL L08
L07: RET
L08: MOV eax, [esp+4]
L09: MOV ebx, [esp+8]
L10: CMP eax, ebx
L12: JG L14
L13: MOV eax, 0
L14: RET
L15: MOV eax, 1
L16: RET

High Level Program Disassembled Binary

Procedures are
encapsulated

No syntactic boundary
for procedures

Partition into
procedures?

7/18/2017 ISSISP 2017- (C) Lakhotia

29

Analysis of Binary

L01: PUSH 0xA
L02: PUSH 0xB
L03: CALL L08
L04: PUSH 0xC
L05: PUSH 0xD
L06: CALL L08
L07: RET
L08: MOV eax, [esp+4]
L09: MOV ebx, [esp+8]
L10: CMP eax, ebx
L12: JG L14
L13: MOV eax, 0
L14: RET
L15: MOV eax, 1
L16: RET

MOV eax,
[esp+4]
MOV ebx,
[esp+8]
CMP eax, ebx
JG L14

MOV eax, 1
RET

MOV eax, 0
RET

PUSH 0xA
PUSH 0xB
CALL L08

PUSH 0xC
PUSH 0xD
CALL L08

RET

Disassembled Program Interprocedural CFG

Procedure 1 Procedure 2
7/18/2017 ISSISP 2017- (C) Lakhotia

30

Binary Analysis - Challenges

7/18/2017 ISSISP 2017- (C) Lakhotia

31

certify /

reject

disassemble

Typical analysis pipelines

extract

procedures

extract control

& data flow

verify

property

VIRUS DATABASE

7/18/2017 ISSISP 2017- (C) Lakhotia

32

certify /

reject

disassemble

Problem: Not hardened

extract

procedures

extract control

& data flow

verify

property

DATABASE

SILENT
FAILURE!

D I S A B L E D !D I S A B L E D !

7/18/2017 ISSISP 2017- (C) Lakhotia

33

Typical analysis pipeline

disassemble
extract

procedures

extract control

& data flow

verify

property

certify /

reject

DATABASE

7/18/2017 ISSISP 2017- (C) Lakhotia

34

Attack: Disassembly

decode machine instructions (byte seq)

disassemble
extract

procedures

extract control

& data flow

verify

property

401063: 5d pop %ebp
401064: c3 ret
401065: 55 push %ebp
401066: 89 e5 mov %esp,%ebp
401068: 83 ec 08 sub $0x8,%esp
40106b: eb 05 jmp 0x401072
40106d: e8 ee ff ff ff call 0x401060
401072: e8 e9 ff ff ff call 0x401060
401077: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
40107e: 81 7d fc e7 03 00 00 cmpl $0x3e7,0xfffffffc(%ebp)

ORIG BYTES ASSEMBLY

401063: 5d pop %ebp
401064: c3 ret
401065: 55 push %ebp
401066: 89 e5 mov %esp,%ebp
401068: 83 ec 08 sub $0x8,%esp
40106b: eb 05 jmp 0x401072
40106d: c7 ee ff ff ff e8 mov $0xe8ffffff,%esi
401073: e9 ff ff ff c7 jmp 0xc8401077
401078: 45 inc %ebp
401079: fc cld

malicious func
jump over junk

bad disassembly
(no jump target)

7/18/2017 ISSISP 2017- (C) Lakhotia

M/o/vfusctor (by Chris Domas)

7/18/2017 ISSISP 2017- (C) Lakhotia 35

7/18/2017 ISSISP 2017- (C) Lakhotia 36

Attack: Defeat CFG
Construction

7/18/2017 ISSISP 2017- (C) Lakhotia 37

Transform code to data

7/18/2017 ISSISP 2017- (C) Lakhotia 38

Defeat signatures:
Packer, with encryption

7/18/2017 ISSISP 2017- (C) Lakhotia 39

Packer - Limitation

Original code in clear text at some
point

7/18/2017 ISSISP 2017- (C) Lakhotia 40

Slip a VM under the program

Protectors – Virtual Machine

7/18/2017 ISSISP 2017- (C) Lakhotia 41

42

Variants vs Family

0

2000

4000

6000

8000

10000

12000

Half Year

Total Variants Total Family

Total Variants 994 1702 4496 7360 10866 10992 6784

Total Family 141 184 164 171 170 104 101

03-I 03-II 04-I 04-II 05-I 05-II 06-I

Source: Symantec Corp 2006

7/18/2017 ISSISP 2017- (C) Lakhotia

7/18/2017 ISSISP 2017- (C) Lakhotia 43

Theoretical Challenge:
Undecidability

Waiting for page to load
Do you hit ‘reload’ or do you wait?

Halting Problem
Write a program that answers:

Will the program P halt for any input?

No program can correctly answer this question
for all programs

Virus (malware) detection problem
Write a program that answers:

Is program P a virus?

Problem is undecidable (Cohen 1984)

7/18/2017 ISSISP 2017- (C) Lakhotia 44

Implications of Undecidability

Analysis problems are undecidable

Precise solutions cannot be computed

Solutions are approximated

Play ‘safe’: over approximate or

under approximate

Catch: ‘Safe’ solutions leave

hideouts for malware

‘Safe’ solution

Precise solution

Hideout for malware

7/18/2017 ISSISP 2017- (C) Lakhotia 45

Obfuscation also has limits

Obfuscation increases:
Code size
Runtime

Cannot be applied ad-infinitum

Research challenge:
How to take advantage of limits of
obfuscation?

7/18/2017 ISSISP 2017- (C) Lakhotia 46

Summary

Malware Detection Ecosystem
Binary Analysis – Areas and Issues
Binary Analysis Challenges

Anti-AV Techniques
Transform, Hide

